Skip to content

GeoSLAM Sample Data

View and download data in our free point cloud viewer

Here’s some helpful tips for the best viewing experience

  • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
  • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
  • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
  • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

Sand Stockpile

Location: Saudi Arabia
ZEB Scanner: ZEB Horizon
Scan time: 15 minutes

This data was processed in GeoSLAM Connect and the volume of the stockpile was calculated (15,000 tons) in GeoSLAM Volumes.

Would you like to see a specific dataset that’s not on this page? Contact [email protected]

One scanner, many solutions

Boulby mine was one of the first in the world to use SLAM technology, having adopted GeoSLAM’s ZEB1 into their workflow, in 2013. Nowadays, the mine operates GeoSLAM ZEB Horizons for most of their survey needs.

Mapping the Underground World

Critical technology for intelligent mines

The future of underground mining

The way we work is changing. Advanced technology tools are transforming the way we collaborate, analyse, organise and innovate. In just about every sector, the tech advance is helping organisations be more productive, save time and money and work better together. And the mining industry is no different – only that it lags behind. (1)

With increased competition, the pressure is on. Around the world, mining operators across all commodities are facing the combined challenges of declining ore grades and operating efficiency. With the decreasing availability of tier one assets, and continued focus on shareholder returns, operators are looking towards digital tools and new ways of working to drive results.

The digital revolution can transform and automate the entire mining value chain from ‘pit to customer’. Advanced supply chain visualisation tools can aggregate data from multi-systems to show near-real-time operations metrics; drones can help with geotechnical monitoring and remotely conduct stockpile volumetric audits; and powerful laser scanners can build highly accurate 3D maps of underground mines in minutes.

The last decade has seen the rollercoaster of highs and lows in the mining sector; and the volatility is likely to continue.(2) While digital tools are readily available that help mining decision-makers do the job better, faster, safer and more cost effectively, there are still many businesses slow to embrace transformative practices. With change being a constant, forward- thinking mining operators need to embrace digital technology and drive innovation, or risk being left behind.

As the mining industry’s value proposition is increasingly called into question, mining companies are beginning to see that they cannot succeed into the future unless they change the way they operate.

-Glenn Ives, Americas Mining Leader, Deloitte Canada

The old tools are blunt

Today’s mining companies aren’t short for choice when it comes to assessing ground-breaking technologies. From autonomous vehicles to automated drilling and tunnel boring systems, the decreasing cost of technology puts many of these innovations within reach. Even within the last few years, drone technology has taken off to the extent that easy-to-use aerial technology is now affordable – and millions of drones are sold each year. (3)

Digital technologies already employed or that will be employed in the next 3-5 years in mining operations:

How spatial data visualisation is rocking the mining world

According to Anglo American, spatial data is being used more and more in the mining industry, with spatial data models and maps becoming more detailed and clearer than ever before. Today, we are seeing breakthroughs in three-dimensional (3D) modelling, Virtual Reality (VR), and Augmented Reality (AR) technology.(1)

3D modelling creates a viewable, life-like impression with depth perception that allows the human brain to understand and relate to complex interrelated issues. VR enables a user to test a piece of equipment without the risk of damage or cost. These new technologies allow us to design new mines more efficiently and make it possible to experience what it’s like to work in a mine without being out in the field.

Digital technologies can not only help mining companies survive, but importantly, to thrive. The productivity and safety gains of embracing new technologies are huge: better equipment performance (47 percent), operational/administrative cost savings (42 percent) and better decision making (40 percent).(3) When you add in stronger collaboration across the supply chain, safer conditions for employees being removed from dangerous working conditions and waste being eliminated – even the most risk averse of mining companies can be convinced.

Yet to be truly successful – cutting-edge technology alone isn’t enough. While digital solutions will empower employees to make better decisions, they will also cause upheaval as manual jobs are automated. Mining companies need to consider how to create new employment opportunities, and how to reskill and retrain people to learn technology and tools faster. They’ll need to not only reach beyond traditional tools but importantly embrace the mindset and approach to collaborate.

Technology is certainly not a silver bullet, but targeted in the right places, it will make mines even more safe, and our operations more efficient and cost-effective.

– Dr Caius Priscu, Head of Mineral Residue Facilities, Anglo American

Rio Tinto: Mine of the Future

A decade ago, Rio Tinto declared one of the most ambitious transformation programs in mining: plans for an intelligent mine packed with driverless trains, trucks and robotics. At the heart of the program is an operations centre in Western Australia that today generates 2.4 terabytes of data every minute from hundreds of pieces of mobile equipment and sensors. Covering 16 individual mines, the one integrated centre (which looks very similar to NASA’s control centre) is manned by operators over 1,500km from the physical sites.

The mining giant was also the first mining company to introduce fully autonomous haul trucks which to date have moved over 1 billion tonnes of material and travelled over 150 billion kms. But automation doesn’t stop there: it also introduced automated drills in production drilling, which is safer for operators and more efficient, and is introducing robotic automation in its rail system – a train comprised of 244 cars stretching a total of 2kms driven by robots. Next stop, possibly a mine with no miners?

The challenges in discovering the world beneath us

We’ve long been fascinated by the underground world of tunnels and caves, and with today’s tech it may soon be possible that ‘Google maps™’ goes underground. Yet aside from exploring the depths for knowledge, mine operators need to safely tap into and excavate the wealth of minerals beneath us. And this comes with a number of challenges:

Access Issues
Access Issues

Underground mapping is one of the most difficult and demanding forms of surveying with mining professionals needing to work in tight, enclosed spaces.

Hazardous Sites
Hazardous Sites

Mining sites are notoriously hazardous, despite the most rigorous safety checks. Companies strive for zero-harm targets yet the mapping process itself is risky.

Pressure to Optimise
Pressure to Optimise

Tunnel construction and underground projects are time consuming and complex, and companies need to plan efficient site operations to optimise production cycles.

Time Constraints
Time Constraints

Mining professionals need to rapidly and accurately map underground environments under intense time pressure, yet traditional survey techniques are slow and inefficient.

Transforming mapping in mining environments

Access to user-friendly technology that can quickly scan difficult-to-reach environments and produce accurate and high-quality 3D data can be a game-changer for mining operators. Leading the change is 3D mobile mapping which helps mine operators improve the way they dig up commodities as well as helping them cut costs, all without the need for GPS.

Using a handheld laser scanner, operators can walk and scan, or attach the scanner to a trolley, drone, pole or mine vehicle for remote monitoring of hazardous environments. The scanner collects the data and SLAM (Simultaneous Localisation and Mapping) software turns it into actionable 3D information within minutes. With minimal training, operators can use it for rapid insight into rock mass behaviour, to measure stockpile volumes or to map complex tunnel profiles. Robust enough to deal with extremely harsh environments, laser scanners help mine owners deliver productivity and efficiency improvements, at the same time as keeping operators safer.

This technology allows us to quickly and easily view, compare and evaluate data to paint a picture of what’s under the ground. It’s like an ultrasound image of the deposit delivered in real time, something that we could never do before.

– John McGagh, Head of Innovation, Rio Tinto


What exactly is SLAM?

SLAM stands for Simultaneous Localisation and Mapping. SLAM devices take data from sensors to build a picture of the environment around them and where they are positioned within that environment. The complex SLAM computations and algorithms effectively construct or update a map of an unknown environment while simultaneously keeping track of the device’s location within it. Every few seconds, the scanner is comparing the data collected with the last few seconds and aligning familiar features together to create a very accurate point cloud.

Setting a new standard for the mining and natural resource sector

Creating highly accurate maps of the underground world, for the mining and natural resource industries, is one of the most complex forms of surveying. Yet innovations in laser technology are transforming and simplifying the way we map the world beneath us and are being applied to a wide range of applications including:

Tunnel & Underground Mine
Tunnel & Underground Mine
Stockpile Analysis
Stockpile Volumes
Shotcrete
Shotcrete
Convergence Analysis
Convergence Analysis
Shaft Inspection
Shaft Inspection
Production Progress Mapping
Production Progress Mapping

With powerful mobile mapping technology at their fingertips, mine operators have ready access to previously unattainable insight into rock mass behaviour. This means they can better tailor their ground support regimes, monitor convergence and better target rehabilitation areas. Other benefits include:

Rapid scanning
Rapid scanning

Operators can slash survey times with easy-to-use technology. Anyone on site can map accurate tunnel profiles, stockpile volumes, pits and caves in minutes.

Go-anywhere mapping
Go-anywhere mapping

You can use the technology in the trickiest, darkest and dampest of spaces, even where GPS isn’t available. Walk with the handheld or attach it to a trolley, drone, robot or autonomous vehicle.

Safety as a priority
Safety as a priority

You can safely scan underground, inaccessible and dangerous environments, even remote and hazardous areas.

Save time and money
Save time and money

Data capture and modelling are up to 10x faster, allowing you to successfully complete projects in minimum time with little or no disruption.

Case Study

Mapping hazardous mines under intense time constraints

Beck Engineering, an Australian mining engineering consultancy specialising in mining and rock mechanics analysis, needs to rapidly map mines under intense time constraints using versatile technology which is adaptable to any environment. GeoSLAM’s handheld mobile mapping solution was chosen as it is compact, portable and delivers a high level of accuracy. With GeoSLAM’s “go-anywhere” 3D technology in hand, Beck Engineering has been able to supply invaluable data regarding the direct effects of mining to better understand the implications of a deforming rock mass. Beck Engineering is now able to accurately measure the shape of an excavation or tunnel over time. As a result, tunnels are safer, better designed and more cost efficient.

We have continued to use GeoSLAM products as they have proven to be affordable, lightweight and sufficiently robust devices for their application underground. GeoSLAM continues to produce a high-quality device that is at the forefront of practical mobile laser scanning devices.
– Evan Jones, Senior Rock Mechanics Engineer at Beck

Tech advancements are already helping improve mine safety, remove wastage and drive greater productivity. And mining companies are already creating jobs that require artificial intelligence or automation-specific skills – from data scientists to automation engineers. Forward-thinking operators who foster innovation will remain competitive. While some mining companies may hesitate and deliberate choosing which technology is best for them to deploy, others are decisive and lead in the race for intelligent mine of the future.

The digital revolution is here – and it’s going underground. With unmanned technology able to carry out open-pit operations, and complex software algorithms able to mine vast quantities of sensor data, the leap to a truly digital mine is within reach.

References

  1. Future Smart Mining – Anglo American
  2. Tracking the Trends 2018 – Deloitte
  3. Drone Sales Have Tripled – fortune.com

Underground 3D Mapping with handheld SLAM scanners

With the recent introduction and constant evolution of handheld SLAM (Simultaneous Localization and Mapping) scanning, mapping underground has become safer, quicker, more automated, highly repeatable, and more effective.

GeoSLAM Sample Data

View and download data in our free point cloud viewer

Here’s some helpful tips for the best viewing experience

  • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
  • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
  • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
  • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

Stockpile

Location: United Kingdom
ZEB Scanner: ZEB Horizon
Scan time:
10 Minutes

Would you like to see a specific dataset that’s not on this page? Contact [email protected]