Skip to content

Creating a digital twin to transform an aging school

Industry

Civil
Engineering

Scan time

4.5 hours

Location

Kansas City,
USA

Size

42,592 sq/ft

Scanned

School

Transforming an aging school in the Jazz District of Kansas City to a community arts centre required the power of today’s real-time technology.

The Attucks building, built in 1905 and renovated in 1922 due to overcrowding, has undergone several developments over the years. For any plans to be approved on the site of the Attucks School, the commission needed substantial and comprehensive drawings – materials, floor plans, site drawings and elevations.

With several hazards identified – visible deterioration in the wood floorings, ceiling collapses, and air quality conditions including asbestos – a fast, accurate and safe survey technique was required.

Civil engineering firm, BHC Rhodes, embarked upon the complex task of a 3D Revit BIM (Building Information Model) using GeoSLAM technology. The handheld “go-anywhere” ZEB Revo is designed to be used without comprehensive training, meaning you can ‘pick up and go’, saving additional preparation time for any members of staff previously unfamiliar with the technology. It’s a simple setup and data gathering is quick and easy; wherever you can walk, you can scan.

With the aid of these lightweight, mobile scanners, specifically designed to scan difficult to access spaces, the entire property was scanned in only 4.5 hours, recording more than 43,000 measurements per second. A BIM model was provided two weeks earlier than expected providing a comprehensive picture of the asset. Only with these modern tools could a real-time digital twin of the ageing building be created quickly, and safely – saving considerable time and money.

attucks school

Mapping Trees on the Move

Industry

Conservation

Scan time

10-15 minutes

Location

Canberra,
Australia

Size

180 square
metre plot

Scanned

National Park

Placed first in Australia and 20th in the world, Australian National University (ANU) is a research institution with its main campus in Canberra, the country’s capital. The university’s research priorities typically reflect the challenges facing the world today. One such project is to track tree growth and development over time in a joint effort between ANU and Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO).

Known as the ‘Precision Measurement of Trees and Forests’ project, the field team is charged with comparing and contrasting different ways of collecting data, using different terrestrial and airborne laser scanners, and working with digital imagery. The survey takes places in the National Arboretum in Canberra which features some 44,000 rare, endangered and symbolic trees and is made up of 94 mini forests.


Image footer: The National Arboretum covers 250 hectares of land within striking distance of Canberra CBD (Image courtesy of Tonkin Zulaikha Greer Architects).

GeoSLAM’s “go-anywhere” mapping technology was a natural choice for the outdoor project. Unlike terrestrial systems, the splash-proof, dust-tight, mobile laser scanners are designed to operate in the most difficult-to-access spaces, inside or outside, in daylight and darkness – without the need for GPS. What’s more, you can easily attach the portable laser scanners to a drone or helicopter for fast outdoor surveying.

In addition to GeoSLAM’s versatile handheld technology, the team also uses fixed point scanning and traditional forestry measures – such as Suunto and digital photographs from UAV’s. Tom Jovanovic, former CSIRO researcher and now Interactive Technology Specialist at the University of Newcastle, Australia, explains that the technologies are complementary, “Using GeoSLAM from the outset, as well as a different system, has enabled us to compare and contrast different measurements and combine them into a heavily monitored site finding. This includes the high level of resolution being sought.”

Emphasising that the project is specifically designed to take advantage of both static and mobile approaches, Tom Jovanovic says, “What’s nice about scanning with GeoSLAM’s technology is that it doesn’t involve repeatedly setting up in different locations within the research plot. You just initiate the start-up procedure then walk around the plot covering the trees from different angles.”

All forestry professionals like Tom need access to user-friendly technology that is easy to operate but is robust and reliable enough to do the job quickly and accurately. With GeoSLAM scanning technology, he says it takes only 10 to 15 minutes to completely cover a 180 square meter plot, adding, “What I really like about this product is that wherever you can walk, you can scan. It really is a case of ‘go-anywhere’. The scanner has made a significant contribution to an important undertaking. Mobile scanning that gives us dynamic changes over time – from any angle and in 3D – is a very important contributor to this work.”

These GeoSLAM-delivered findings are vital to the project’s long-term aim. Combining them with knowledge of water usage and photo synthesis, plus meteorological data and high resolution photography, they feed into very fine scale modelling that will guide forestry research management and habitat protection policies into the future.

GeoSLAM Sample Data

View and download data in our free point cloud viewer

Here’s some helpful tips for the best viewing experience

  • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
  • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
  • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
  • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

Pitcher & Piano Bar

Location: Nottingham, United Kingdom
ZEB Scanner: ZEB Horizon & ZEB Revo RT
Scan time:
22 Minutes

The external was captured with the ZEB Horizon and the internal was captured with the ZEB Revo RT. Read more about the scan here.

Would you like to see a specific dataset that’s not on this page? Contact [email protected]