Skip to content

The role of LiDAR in bringing ‘Industry 4.0’ to Norwegian forestry

Location

Ås,
Norway

Scan time

Approx. 10-20 minutes per scan

Size

250 Sq/m plots

Scanned

Norwegian forests

Industry

Forestry

SFI SmartForest and LiDAR in Norwegian forestry

The SFI SmartForest is a part of the Centres for Research-based Innovation scheme of the Research Council of Norway. It aims to position Norway’s forestry sector at the forefront of digitisation by 2028. The primary goal of the 8-year research centre is to improve the efficiency of the Norwegian forestry sector by enabling a digital transformation, using innovative technologies, such as LiDAR. They aim to increase productivity, reduce environmental impacts, and review other significant climate benefits.

SmartForest are focusing on silviculture, forest operations, wood supply, and the overall digital information flow. The hope is to bring industry 4.0 to the Norwegian forestry sector by having a free flow of information and real-time communication, through innovative and enabling technologies.

The interconnectivity of data and technology will not only result in the long-term success of the forestry sector in Norway but also contribute to limiting potential environmental impacts.

LiDAR is one of the enabling technologies that will help them collect accurate data for ground truthing. The point cloud is forming a basis for deep learning models that can eventually apply to much larger mapped areas.

Why is mobile LiDAR required?

The forest is dense with trees, the floor is often rough terrain, and it is usually hidden beneath a thick canopy of vegetation. To capture 3D models of the forest, SmartForest need a mobile LiDAR solution that can map from the ground and a UAV-based LiDAR solution to capture properties of the tree canopy.

Data acquisition is only one part of a larger workflow that can include segmentation algorithms, allowing for further exploration of the physical attributes of individual trees such as tree height and distribution. It’s important for the data to be precise, to ensure accurate monitoring of the forest.

An obvious solution was a static-based terrestrial laser scanner (TLS), however, despite the accuracy levels being incredibly high, the speed of capture was impeded by the need for several scans in one area. As the project progresses and the need for scanning larger areas increases, TLS becomes a less likely option.

Another choice was a UAV-based solution that can capture large areas in a short period of time. Though SmartForest works with UAV to capture the forest canopy, it’s less effective at penetrating thick vegetation to collect forest floor and trunk data than it is from the ground.

After looking around the market, they opted to try mobile laser scanning as a solution that could quickly capture ground data to an accuracy high enough for their needs.

Vegetation, trunks and terrain

Trunks and terrain

Terrain

Working with GeoSLAM’s ZEB Horizon

SmartForest chose GeoSLAM’s ZEB Horizon scanner for its speed of capture, ease of use, and mobility. Projecting 300,000 laser points per second with a range of up to 100 meters, the scanner produces dense point clouds of large areas, in a short period of time. The accurate point cloud includes the forest floor, debris, tree trunks, and thick vegetation.

Frequent data acquisition is a key part of SmartForests plans and GeoSLAM’s handheld LiDAR scanner, alongside UAV data capture help to achieve this. The ZEB Horizon’s ease of use makes data acquisitions a repeatable task and the high accuracy of data provides a foundation for deep learning models.

The point clouds are processed in GeoSLAM’s software package and imported in 3rd party solutions, where sophisticated algorithms are applied to segment the data. Automatic segmentation of the tree trunks allows for easier tree counts and tree segmentation provides precise forest inventory, down to the individual tree. The digital separation of trees will lead to the extraction of features such as wood quality, biomass, and other ecologically relevant variables.

Scanning with the ZEB Horizon is a very efficient way to collect ground truth. Eventually, we want to use it for large-scale mapping applications.

Conclusion

The long-term plan for the SFI SmartForest is to bring industry 4.0 to the Norwegian forestry industry, using emerging and enabling technologies. Handheld LiDAR scanning has been identified as an efficient way to map the forest from the ground, providing accurate point clouds which serve as the basis for deep learning research opportunities.

They hope to use GeoSLAM’s ZEB Horizon for other applications in the future, having seen the versatility of the scanner.




If you’d like to learn more about how GeoSLAM solutions can help you, submit the form below.





    Please select your Country


    How did you hear about GeoSLAM?


    GeoSLAM and its authorised partner network will use the information you provide to contact you about products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, please review our Privacy Policy.

    Opt in to the GeoSLAM mailing list for updates and offers

    GeoSLAM Sample Data

    View and download data in our free point cloud viewer

    Here’s some helpful tips for the best viewing experience

    • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
    • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
    • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
    • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

    Railway Line

    Location: Norway
    ZEB Scanner: ZEB Horizon
    Scan time:
    15 Minutes

    Would you like to see a specific dataset that’s not on this page? Contact [email protected]

    GeoSLAM Sample Data

    View and download data in our free point cloud viewer

    Here’s some helpful tips for the best viewing experience

    • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
    • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
    • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
    • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

    Clifton Suspension Bridge, UK

    Location: Bristol, UK
    ZEB Scanner: ZEB Horizon and ZEB Vision
    Total Scan time:
    16 Minutes

    Would you like to see a specific dataset that’s not on this page? Contact [email protected]

    GeoSLAM Sample Data

    View and download data in our free point cloud viewer

    Here’s some helpful tips for the best viewing experience

    • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
    • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
    • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
    • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

    Africa Museum

    Location: Belgium
    ZEB Scanner: ZEB Horizon and ZEB Vision
    Total Scan time:
    20 Minutes

    Would you like to see a specific dataset that’s not on this page? Contact [email protected]

    ZIEN24 use GeoSLAM scanners to create measurement reports for the Real Estate Market

    Location

    Netherlands

    Scan time

    Approx. 15 minutes per scan

    Size

    Varies per scan

    Scanned

    Residential & commercial properties

    Industry

    Real Estate

    Real Estate in the Netherlands

    Real Estate is a fast-moving and highly competitive market. Companies are reliant on good customer relationships based on trust. They realise the importance of providing accurate measurements and specifications of the properties they are advertising. Buildings incorrectly measured could be under or overvalued, which could result in complaints, invalidate a sale, or damage their reputation.

    This is particularly pertinent in the Netherlands, as they have placed a high level of importance on delivering accurate floorplans when advertising a property. In fact, a new regulation was introduced in 2010 after properties in Amsterdam were sold at a higher cost, after being overvalued due to incorrect floorplan measurements. The regulation, BBMI, requires businesses advertising properties to provide accurate floorplans or face potentially heavy fines.

    This required businesses to think differently about how they could quickly and accurately assess the properties they were advertising.

    How ZIEN24 create Measurement Reports for Real Estate

    Rotterdam based media and marketing company, ZIEN24, realised they needed to modernise how they measure properties in light of the regulations. ZIEN24 produces content and digital floorplans for estate agents, covering all types of residential and commercial properties.

    The company began measuring properties using laser rangefinders, which were not only time-consuming but also not cost-effective. The company received complaints when properties were not measured within the limits of the regulation, and the team had to occasionally return to properties to re-measure them. In addition, ZIEN24 was sending both photographers and surveyors to properties, which was not cost-effective or ideal for their clients.

    Having worked with point clouds previously, ZIEN24s co-owner, Boy Van Houten, thought that they could be the solution for accuracy. However, they needed a setup that was quick and effective, so static-based systems were not an option. After researching different scanner options, they decided to try GeoSLAM’s ZEB Revo RT with the ZEB Pano accessory.

    Why ZIEN24 chose to work with the ZEB Revo RT

    The ZEB Revo RT is highly accurate, fast, and easy to use. As it requires minimal training, ZIEN24 taught their photographers to scan properties when they’re on location taking marketing photos. This negated the need for a surveyor, saving ZIEN24 money which could be passed on to their clients. The scanners accuracy largely removes the risk of human error, and ZIEN24 have not received any complaints since starting to use GeoSLAM scanners back in 2019.

    The addition of the ZEB Pano allows them to take informative 360 degree panoramic photography, at a much quicker pace, during a scan. The ZEB Pano stores the exact location of each panoramic image within the scan, enabling more accurate and less intrusive property surveys. This is vital for ZIEN24, as the popularity of virtual house tours increases within the real estate industry.

    The GeoSLAM scanner not only gives us confidence in the end product but gives our clients peace of mind knowing that our fully-automated measurements are highly accurate.

    How the ZEB Revo RT has helped ZIEN24 with their Real Estate services

    As the scanner captures in real-time, the photographers can easily ensure that they are capturing every room, as they walk around. Furthermore, the speed of capture, 200m2 in 15 minutes, means that more properties can be assigned to photographers per day. The data is then processed in their offices in China, and accurate floorplan reports are typically turned around within 24 hours.


    The ZEB Revo RT has also helped them to expand into other markets, and they now offer scanning services to support BIM models.




    If you’d like to learn more about how GeoSLAM solutions can help you, submit the form below.





      Please select your Country


      How did you hear about GeoSLAM?


      GeoSLAM and its authorised partner network will use the information you provide to contact you about products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, please review our Privacy Policy.

      Opt in to the GeoSLAM mailing list for updates and offers

      GeoSLAM Sample Data

      View and download data in our free point cloud viewer

      Here’s some helpful tips for the best viewing experience

      • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
      • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
      • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
      • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

      Klagenfurt Cathedral

      Location: Austria
      ZEB Scanner: ZEB Horizon
      Scan time:
      18 Minutes

      Would you like to see a specific dataset that’s not on this page? Contact [email protected]

      Surveying Avalanches in the French Alps

      Location

      Savoie Region, France

      Scan time

      2 hours

      Size

      3000 sq/m

      Scanned

      Avalanches and Snowpacks

      Industry

      Education

      Assessing Levels of Energy Radiation through Differing Conditions

      Climate Change is often attributed to greenhouse gases, however, there are also other factors that affect the Earth’s climate. One example of this is the ‘Earth’s radiation budget’. Earth’s radiation budget is energy that enters the earth’s atmosphere that is reflected, absorbed, or emitted by our planet. If the budget becomes out of balance, it can cause temperature increases or decreases in the Earth’s atmosphere.

      A team from the Institut de Physique du Globe de Paris (IPGP), a world-renowned geosciences organisation, have conducted research in this field. Their research focuses on how differences in surface roughness effect the amount of microwave radiation picked up by satellites.

      Comparing Surface Roughness of Snowpacks and Avalanches in the Vanoise Massif Mountain Range

      For their research, the team have been concentrating on snowpacks and avalanches in the Vanoise Massif Mountain range. They aim to compare the two satellite observations to assess the effect of the change in roughness when avalanches form using radiative transfer modeling. This is the process that measures radiation from the Sun into and out of the Earth. High levels of sun radiation can cause snow to melt which, in turn, can cause avalanches.

      The Vanoise Massif Mountain range is in the Granian Alps, in the Savoie region of France. It is the third highest massif in France, sitting at 3,885 meters at the summit Grande Casse. The range is the location of France’s first National Park, the Vanoise National Park.

      The Mountain Range’s Dangerous and Difficult to Access Environments

      To collect data from the snowpacks and avalanches, the team needed an accurate 3D model of the area. Vanoise National Park is a no-fly zone which meant that UAVs were not an option. Additionally, the team did not want to spend extended periods of time on the mountain due to the risk of avalanches. This ruled out more time-consuming methods of scanning, like terrestrial laser scanners.

      As a result, the team needed a more efficient way of mapping the difficult area. They decided SLAM was their best option and chose to use GeoSLAM’s ZEB Horizon with the backpack solution.

      We were looking for a portable, versatile and affordable LiDAR scanner solution and GeoSLAM allows us to meet all our constraints.

      Using ZEB Horizon to Safely Map Avalanches in the Vanoise Massif Mountain Range

      The walk and scan method and versatility of the ZEB Horizon stood out to the team from IPGP.  The specificity of the environment meant they needed to use technology that was easily movable and durable. In addition, the backpack solution was essential because it meant that the person carrying out the scan had their hands free to help them navigate the rough terrain.

      Furthermore, the ZEB Horizon’s speed of capture meant the team were able to scan the 3000 sq/m area in approximately 2 hours. This ensured that they did not spend too long in the hazardous mountain range, whilst capturing the accurate data they needed.

      Creating Accurate Data to be used in IPGP’s Research

      The scan was processed using GeoSLAM’s software package. The resulting point cloud is being integrated in IPGP’s research analysis and modelling.

      The ZEB Horizon’s ease of use and accuracy means the scan data can be compared with the data collected from the satellite observations. This is known as ground truth analysis and helps with clarity within the research. The scan data also aids with data calibration which allows for atmospheric effects and obstructions to be considered when analysing the final data.

      The positive outcome of the data has encouraged the Institut de Physique du Globe de Paris to plan additional surveys in this area.

      Monitoring environmental changes are just one of the ways GeoSLAM customers are using their mobile mapping devices, alongside more common everyday uses like measuring buildings or construction sites.

      Thanks to the team at Institut de Physique du Globe de Paris for sharing their story with us.




      If you’d like to learn more about how GeoSLAM solutions can help you, submit the form below.





        Please select your Country


        How did you hear about GeoSLAM?


        GeoSLAM and its authorised partner network will use the information you provide to contact you about products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, please review our Privacy Policy.

        Opt in to the GeoSLAM mailing list for updates and offers

        GeoSLAM Sample Data

        View and download data in our free point cloud viewer

        Here’s some helpful tips for the best viewing experience

        • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
        • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
        • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
        • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

        Chemical Plant

        Location: Europe
        ZEB Scanner: ZEB Horizon/ ZEB Discovery
        Scan time:
        15 Minutes

        Colourised data was captured using the ZEB Discovery backpack solution.

        Would you like to see a specific dataset that’s not on this page? Contact [email protected]

        How LiDAR Can Help Detect Change at a Community Micro Hydro Power Generation Site

        Location

        Congleton, UK

        Scan time

        25 Minutes

        Size

        100m x 100m Area

        Scanned

        Micro Hydro System

        Industry

        Surveying

        Discussions around climate change, and how we can lessen our environmental impact, have become increasingly more relevant in recent years. This has driven some companies and communities to explore different ways of producing renewable technologies, to reduce dependency on fossil fuels. One method for gathering renewable energy is by using Micro Hydro power generation.

        Hydroelectric power generation relies on a constant water cycle. Nature is perpetually replenishing this, making it a good clean source of energy. This method of producing electricity using hydroelectric power generation is what the Congleton Hydro Project has set out to achieve.

        Dane Valley Community Energy Ltd (DVCE), a non-profit community benefit society, developed and constructed the project. DVCE is a volunteer led organisation, run by a small team of volunteer directors, who have all worked within Engineering and Management Companies. Funded by the community of Congleton, the project aims to generate enough carbon-free electricity, using hydroelectric power generation, to power 60 homes within this local area.

        Utilising an Archimedean Screw for Micro Hydro Power Generation

        For this project, the team set up a Micro-Hydro System, including an Archimedean Screw. The hydroelectric energy is generated by the nearby Havannah Weir River. The energy is extracted by using the water flow to turn the Archimedean Screw, which is connected to an electrical generator.  Having constructed the whole system in just 12 months, DVCE were able to produce their first load of electricity in a relatively short space of time.

        The area surrounding the Archimedean Screw required significant and extensive ground works, together with a substantial walkway, powerhouse, and piped water inlet system. Whilst designing the project, it became apparent that a core worry would be movement of the terrain, due to weather and time. As a result, they decided they needed to frequently monitor this surrounding area.

        The Archimedean Screw has a life expectancy of 40 years, and the team hope to make returns on their investments in the next 20 years. In addition to generating clean energy, a core objective is to generate an annual surplus, which will fund the local community. It is therefore essential that any change in land stability does not impact the planned generation. The team decided that a monitoring system would help identify any movement so that timely corrective action could be taken.

        Tracking Changes in the Land and Facilities Management

        Via a family member (Dr Jonathan Owen), the team acquired a 3D handheld laser scanner, GeoSLAM’s ZEB Go. The handheld nature of the scanner will mean they can track land movement and vegetation rates over time. In addition, they can map the on-site building to help with facility management and storage.

        GeoSLAM Connect’s Stop and Go Alignment can help the team align these scans, as it would give them a more accurate view of the exterior and interior areas together.

        GeoSLAM technology is ideal for this type of work, due to the uneven terrain. The mobile device can map an area by simply walking around, whereas systems that require a more complicated setup would struggle to scan the area promptly.

        The Benefits of GeoSLAMs Technology

        The ZEB Go’s speed of capture enables DVCE to carry out scans of the 100m x 100m area surrounding the Micro-Hydro System in just 25 minutes. As the team are detecting change in the ground movements and vegetation, they can frequently scan the area to track any issues that may arise. A great way to document the area, as frequently as DVCE need.

        The ZEB Go’s ease of use means the team would not need to be survey trained for the scan, unlike more complicated to use scanning hardware. Further, the ZEB Go’s capabilities save all the team from having to repeatedly return to the site, as just one individual is needed.

        The team were impressed with the ease that the ZEB Go was used to survey the complete site, with no tripods being needed and no complicated set up.

        Creating Accurate Georeferenced Point Clouds

        Whilst capturing the data, the team laid down control points using a GNSS receiver. This allowed the team to georeference the data using GeoSLAM’s software. Now the surveying pins are in place, the team can simply georeference the data for each scan they conduct.

        Implementing control points was important for DVCE as it allows for clear comparisons between multiple scans of the same area. Georeferenced data places the scan in the real world and makes the data even more accurate. This will benefit the team as they continue to scan the Micro-Hydro System’s surrounding areas in the future and detect any gradual change.

        The ZEB Go delivered an accurate 3D replica of the area that continues to help DVCE in their project.  The versatility of the ZEB Go and resulting point cloud means the team can look into new ways to interpret the data – protecting this vital equipment for both the environment and local community.

        Jonathon was the lucky winner of our ‘Win a ZEB Go Competition’ at GeoBusiness 2021.

        If you’d like to learn more about how GeoSLAM solutions can help you, submit the form below.





          Please select your Country


          How did you hear about GeoSLAM?


          GeoSLAM and its authorised partner network will use the information you provide to contact you about products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, please review our Privacy Policy.

          Opt in to the GeoSLAM mailing list for updates and offers

          GeoSLAM Sample Data

          View and download data in our free point cloud viewer

          Here’s some helpful tips for the best viewing experience

          • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
          • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
          • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
          • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

          British Residential Street

          Location: United Kingdom
          ZEB Scanner: ZEB Horizon
          Scan time:
          5 Minutes

          Colourised data was captured using the ZEB Vision camera accessory.

          Would you like to see a specific dataset that’s not on this page? Contact [email protected]