Skip to content

Creating 2D Floorplans for a residential Home

Location

Kent, UK

Scan time

30 minutes per scan

Size

23 rooms measuring 663m2

Scanned

Residential

Home

Industry

Surveying

Surveyors need to accurately capture, manage and utilise 3D spatial information – often in environments where there is very limited time on site. Omega Geomatics, a land surveying practice in the UK, took on one such task when they produced 2D floorplans for a nursing home, while the site was occupied 24/7. Paramount was ensuring minimum disruption to residents, while still achieving a high level of accuracy.

With the building measuring 663m2 and with 23 residential rooms, communal and staff areas, the project team needed to find a new surveying method that meant they could walk and scan each resident’s room quickly without disrupting their daily routines.

Two surveyors visited the nursing home and coordinated five spheres by the building exits on multiple levels. With GeoSLAM’s ZEB Revo, and its speed of capture capabilities, the team were able to walk around the building and capture the data needed from each room within just 10 to 20 seconds.

With just two team members required for the project and less time expended on site, the overall cost was dramatically reduced

The team conducted long-distance checks and height measurements. External scans took place, as an extra accuracy check. The entire scan took just 30 minutes, and the client was provided with accurate 2D floorplans within 24 hours, notably without any distress or disturbance to residents.

The project required just two team members and this rapid data collection had huge cost-saving benefits. In turn, this led to less time spent on site, which also contributed to reducing the cost, all without compromising on accuracy. The scan achieved an average +/-15mm which met the needs of the client.

Eaton Lodge

Midland Survey uses GeoSLAM to scan nearly 200 rooms at Oxford University

Industry

Surveying

Scan time

30 mins per
scan

Location

Oxford, UK

Size

12,000 sq/m

Scanned

University

“Midland Survey are experts in surveying complex and difficult to access spaces where there is limited or no GPS, but Oriel College with its labyrinthine network of historic buildings brought a particular set of challenges.

 Oriel College, part of the prestigious University of Oxford in the UK, is nearly 700 years old, with around 200 rooms across five stories including an “island site”, accessible only via tunnel. The structure has been extended over the years and no accurate floor plans or elevation drawings exist.

As a world-class institute, it is occupied 24/7 and opportunities to accurately scan with minimal disruption are few. Traditional tools were not an option due to the network of rooms spread across 5 stories.

Due to the lack of GPS coverage in the tunnel, the only option was to use GeoSLAM’s ‘go-anywhere’ ZEB Revo. The unusual shape of the building, with its unconventional layout and complex network of rooms, meant it was too difficult and time-consuming to survey with traditional static scanning methods (as this would require multiple individual set-ups and increased post-processing work). We needed a lightweight, mobile tool that works well in enclosed environments.

The entire project was completed in around half of the total time that would have been required using static equipment. The ZEB Revo is a real game-changer for us.

Using the ZEB Revo around 200 rooms were scanned, amounting to 12,000m². Across 5 days, 12 individual rapid ZEB Revo scans were completed each taking just 30 minutes. The entire project was completed in around half of the total time that would have been required using static equipment.

We frequently work in hazardous environments, as well as in complex and difficult to access spaces where there is limited or no GPS coverage such as heritage buildings with thick stone walls. We often have limited time on site to accurately create a 3D model. Access to user-friendly technology such as the ZEB Revo that scans multi-level environments and produces accurate and high-quality 3D survey data, is a real game-changer for us.

Quad of Oriel College in Oxford – England

Accurately Measuring a waterfront apartment Block

Location

Vejle, Denmark

Scan time

30 Minutes

Size

58,000 sq. ft

Scanned

Apartment
Block

Industry

Surveying

The Importance of Accurate Measurements in Construction

In Denmark, inaccurate data of floor space in residential or office buildings can have legal implications. Therefore, building contractors must provide accurate measurements for the built floor area for each apartment before a purchase could be finalised.

LIFA Surveyors is one of the leading surveying companies in Denmark. They were recently tasked with collecting floorplan data for a 13-story waterfront apartment building in Vejle. The apartment building, totalling 58,000 sq. ft, was going through construction, and each apartment required accurate measurements of the floor space.

Consequently, LIFA Surveyors needed a solution that could precisely map each apartment at speed and with minimal disruption.

How GeoSLAM Technology is Beneficial for Surveyors

They decided to work with handheld SLAM laser scanners and found that GeoSLAM’s ZEB Revo was the best solution for the job.

The ZEB Revo appealed to LIFA for various reasons but above all the scanner is easy to use, requiring minimal training. As a result, the entire building could be scanned by one person in 30 minutes. Further, the ZEB Revo’s speed of capture combined with its accurate measurements, meant that LIFA could achieve its goals cost-effectively.

We surveyed an entire 13-storey residential building in one and a half hours with only 30 minutes needed for the actual scanning.

Using accurate measurements and point clouds to Create BIM Models

The 3D point cloud data collected by the ZEB Revo was used to create a Building Information Model (BIM). Technicians used the BIM to take measurements of the apartments and common spaces, such as hallways and elevator shafts. During this process, the team visually compared the model against the original design plan to ensure that all building elements were constructed correctly. Due to the efficiency of the scanner, LIFA achieved the accuracy needed for their client.  

The speed of capture and ease of use resulted in LIFA surveyors dramatically reducing their time on interior building survey from days to hours, whilst maintaining high levels of accuracy.

Within days of the scan, LIFA delivered the final measurements to the contractor – a cost-effective solution for both companies.

data visualisation and BIM of apartment created with accurate measurements

Laser scanning in the busy environment of Arc de Triomphe

Industry

Conservation

Scan time

10 minutes

Location

Paris,
France

Size

50m tall

Scanned

Arc de
Triomphe

Alongside our work in land management, engineering and rail sectors, our teams dedicate time for architecture and heritage projects, working to preserve just some of the 40,000 listed historic monuments in France alone. As a geospatial technology specialist, we are aware of the great significance many of our historical monuments hold.

One of the most famous, located at the tip of the Champs-Elysees in central Paris, is the Arc de Triomphe. In order to demonstrate to the Parisian crowds the precision and speed of scanning technology, we enlisted the help of GeoSLAM’s ZEB Horizon.

Recognised as the centre of Paris for its position on the iconic roundabout, and measuring 50m tall, 45m wide and 22m deep, access to the Arc is limited. Yet with the ZEB Horizon and its ability to capture distant elements at a range of 100 metres, the handheld scanner proved to be an effective companion for the project.

The ZEB Horizon was not only fast, but discreet and easy to operate in such a busy environment

With approximately 600,000 visitors per year, accessing the site with a static scanner would be difficult. In order to carry out the survey, the operator walked around the Arc, returning to complete a figure of eight shape, all in one fluid motion and after ten minutes data capture was complete.

Achieving the same results with a static scanner would have taken considerably longer due to the numerous set-ups and the time it takes to complete each scan. The ZEB Horizon was not only fast, but discreet and easy to operate in such a busy environment.

Paris Arc de Triomphe (Triumphal Arch), place Charles de Gaulle in Chaps Elysees at sunset, Paris, France.

GeoSLAM technology was at the top of our list to scan the Arc, primarily due to its accuracy, ‘on-the-go’ method of data collection and fast application. In just 10 minutes of data capture, we obtained 10 million cloud points with 2cm accuracy – together depicting the engravings of war victories as designed by architect, Guillaume Abel Blouet in 1833.

Its ability to capture 300,000 points per second made the ZEB Horizon our technology of choice. Understanding the project’s restrictions due to location and popularity, we’re delighted with the outcome, which demonstrates the importance of mobile mapping devices to historical buildings such as this.

geotopo logo

ZEB Horizon used to Capture data on Croatia’s forest to understand biomass

Industry

Conservation

Scan time

9 minutes

Location

Čakovec,
Croatia

Size

1km in
length

Scanned

Forest

“47% of Croatia’s total land area is covered by forest, an area of approximately 25,000km2 . Management of these vast valuable assets is a key industry in Croatia and across its central European neighbours. As well as managing the biodiversity and sustainability of the forests, it is important for commercial logging companies to assess the quality and biomass of the forests for responsible timber sales. This assessment is a growing need – every year, Croatia adds 10.5 million m3 of forestry to its stock.

Methods of forestry management typically involve measuring the height, diameter and relative position of trees using equipment such as tape measures, ultrasound instruments, total stations and terrestrial laser scanners. However, there are limitations to these methods – they’re often time consuming, involve multiple setups and numerous members of staff to take the measurements (especially since forestry is usually in remote and difficult to access areas). Due to dense canopy cover, forests are usually GNSS-denied areas, and along with the uneven terrain, it can be difficult and time consuming to measure with terrestrial laser scanners.

Geocentar have a large client base in the forestry industry and upon delivery of our new ZEB Horizon mobile laser scanner, we decided to put the technology through its paces and see how it weighs up against other solutions for measuring biomass.

The ZEB Horizon captures forestry data more accurately than traditional methods and eight times faster

Visiting the Perivoj Zrinskih park, the ZEB Horizon was initialised on a flat surface before the operator navigated around the park at normal walking pace. With a capture range of 100m, It took just 9 minutes in total to walk around the park and capture all the trees.

Back in the office we processed the data with GeoSLAM Hub software, then exported using GeoSLAM Draw. The data was then imported into an open source forestry programme called 3DForest whereupon several parameters could be measured and extracted automatically including ground extraction, tree detection, tree position detection, tree radius determination, tree height determination, tree crowns detection, crowns volume calculation and crowns collision determination.

Later we revisited the park to check the accuracy of their results and re-produced the survey using a total station with built-in REM (Remote Elevation Measurement) and a measuring tape. Not only did it take four minutes per tree to capture data due to all the total station setups, but only four parameters (diameter, height and relative position) could be calculated using these methods. If they had attempted to measure all 217 trees, it would have taken a whopping 14.5 hours!

Using the ZEB Horizon and 3DForest software, it took 9 minutes to scan the park, 12 to process the data in GeoSLAM Hub, 5 minutes to reduce the data size in Hub and prepare the cloud for the forestry software, which took 90 minutes to process. The total workflow took just under two hours to collect and measure all 217 trees – using traditional methods they could have surveyed just 29 trees in this time.

Geocentar calculated that results were accurate to within 3cm and were more accurate than using traditional methods, leading to great cost savings.

geocentar logo

Property remodeling with the ZEB Horizon

Location
Location

Théoule-Sur-Mer,
France

Scanned
Scanned

French Villa &
surrounding area

Size
Size

Approx. 8000
Sq/M

Scan time
Scan time

10-15 minutes
per scan

Industry
Industry

Surveying

As mobile laser scanning becomes faster, more cost effective and accurate, surveying companies are finding them to be one of the most efficient tools for capturing the spatial details of a building in 3D. Pointclouds are being used more and more in the property renovation and architecture markets, where the use of LiDAR and SLAM are driving down cost and increasing efficiency.

CEP David Pierrot is a surveying company based in the South-East of France, in both Cannes and Mandelieu. Since beginning their business in 1965, his company has worked on over 21,000 projects in the Alpes-Maritime and surrounding areas, and they continue to work on over 800 projects per year.

The company is represented by 2 expert surveyors, David Pierrot and Robin Bruna. They understand the value in using the latest hardware and software technologies to achieve the best results for their clients. In recent years David and Robin have adopted GeoSLAM scanners into their arsenal of tools, due to their speed and precision. They began working with the ZEB Revo RT, and have since incorporated two ZEB Horizons into their business.

Pointcloud captured by CEP David Pierrot using GeoSLAM scanners

ZEB Horizon | Scanning a French villa

The company was recently tasked with completing a survey of a villa on a steep hillside, in Théoule-Sur-Mer. The goal of the project was to create a detailed topographical map of the existing building and surrounding area, working closely with an architect who will use the map to plan and conduct new construction work. As the surveying experts, they establish whether the site is suitable for the planned construction work, and the architect uses the 3D/2D vector to put together plans for the construction work.

The GeoSLAM ZEB Horizon was chosen to conduct this scan because of its speed of acquisition, precise measurements, range, and versatility. A large part of the scan took place on a steep hill leading up to the house, so a handheld scanner was the ideal choice.

The surveyor in charge of this scan, Robin Bruna, was able to walk and scan, cutting down the time it took to capture the entire area, whereas a static scanner on a tripod would have taken far longer due to the tough terrain. The entire scan was conducted using only the GeoSLAM ZEB Horizon.

The ZEB Horizon scans points at 40-50m, which allows for a much better trajectory than other mobile scanners.

The area of land scanned, including the house, totalled 8000 sq/m and the whole area was captured in just 4 scans. Each scan took approximately 10-15 minutes to complete, so the team were able to capture useable pointcloud data in approximately one hour!

The separate scans were then processed using GeoSLAM software and merged into a complete 3D pointcloud before being georeferenced. The team then took the pointcloud through a classification process to get a better understanding of the land, before beginning the creation a 3D/2D vector map in Autocad.

They also created longitudinal cuts in the cloud to provide the architect with reliable and visual information about the incline of the hill. The maps created will help the architects carry out landscape insertions and plan out new construction work to the lower part of the property.

The use of the ZEB Horizon meant that the team could not only carry out the entire scan with ease, but due to the speed of data acquisition, they were able to get the pointcloud into the post processing stage far quicker than if they had used a static scanner, thus saving them time and money.

The digitlisation of the land makes it possible for the architect to check the feasibility of construction, without needing to re-visit the area. Finally, in line with the “ordre das geomitics-experts”, David and Robin set up a process that allows the inspection of the measurement accuracy.

To learn more about some of the projects CEP David Pierrot have been involved with, visit them at www.cabinetpierrot.fr

Robin Bruna

Robin Bruna

CEP David Pierrot | Géomètre-Expert

Using LiDAR to understand complex forest environments

Industry

Conservation

Scan time

10 mins per
scan

Location

Cornwall,
UK

Size

1km in
length

Scanned

Eden Project

Monitoring and understanding our environment has never been more important as the threat of climate change looms and governments step up to better manage their greenhouse gas emissions. Tom Potter, a doctoral researcher at the University of Leicester, UK, set out to further develop a technique to estimate biomass and carbon more efficiently using state-of-the-art, mobile LiDAR sensors across multiple, complex forest environments.

To do so he visited the Eden Project in Cornwall, UK which reflects a true tropical forest – representing different forests from around the world with a rainforest ‘biome’ of over 1,000 tropical trees and plans. However, he had to work around several challenges. For fixed point scanners, the high-density plots of specimens created a problem of shadows – known as ‘occlusions’ – whereby the nearest features will block out features behind. This also limits the ability to acquire accurate measurements to create a comprehensive 3D model. And with the biome being open to the public and a popular tourist destination, Tom only had a few hours each day before opening hours – insufficient time for a traditional static survey.

Mobile surveying equipment that was able to take readings easily and quickly from even the densest areas was needed to ensure precise scans were taken to accurately calculate biomass and carbon storage potential.

Tom found the mobility and speed of GeoSLAM’s ZEB Revo to be the perfect solution. The lightweight scanner can be pole mounted, handheld or even attached to a vehicle or drone – collecting over 43,000 measurement points per second. Instead of hundreds of time-consuming static scans, Tom captured all angles by simply walking in a loop around the rainforest environment.

He then converted the point cloud data into 3D volume-based plots to derive above-ground biomass and carbon densities for multiple types of tropical forest. A comprehensive dataset was built, containing information for any type of forest that scientists can use to make calculations with minimal survey effort or expertise. And all at considerably less expenditure than traditional survey methods.

COWI embraces mobile mapping technology to measure buildings

Industry

Engineering

Scan time

6 months

Location

Various,
Denmark

Size

400
buildings

Scanned

Municipal
buildings

Digital technology is changing the way we design, construct and maintain our infrastructure. With the built environment ever more complex, traditional 2D data is not up to the task. As we move towards a more intelligent, more integrated, BIM-focused methodology, 3D data is becoming the norm. To stay ahead of the competition, surveying firms need to integrate innovative engineering approaches, digital technologies and intelligent data.

COWI is a multi-discipline engineering and planning firm based in Denmark. We have been eager to accelerate survey workflows and, as a result, have embraced digital engineering and added several GeoSLAM solutions to our arsenal of specialist scanning equipment. In just 6 short months since acquiring their first handheld laser scanner, a two-man team at COWI has used the ’go-anywhere’ mapping device to survey the interiors of some 400 municipal buildings; mapping over 16,000 rooms and measuring more than 300,000 m2 .

We can now measure building plans 10-times faster than we used to with total station or traditional survey equipment.

GeoSLAM’s solutions are changing the way we survey buildings. We can now measure building plans 10-times faster than we used to with Total Station or traditional survey equipment. Our decision to purchase another GeoSLAM solution was easy. With their handheld devices, we surveyed more buildings with more rooms in six months than traditional survey equipment would have allowed in many years. And we were able to capture more information in the process.

industries hero
industries hero
cowi logo

Builders By Design introduce GeoSLAM into their workflow to reduce survey times

Location

London, UK

Scan time

6 – 8 scans per day

Scanned

Residential
Properties

Industry

AEC

Established in 2001, Builders by Design Ltd are a multi-disciplinary design and construction company based in London. Their expertise and services are mainly in the residential sector for new builds, conversions, and extensions. The core business is a combination of collaborations via competitive tender, negotiated contracts and design and build. They also have a bespoke joinery workshop facility in Park Royal, designing and fabricating furniture, kitchens, windows and doors. One of their greatest achievements to date, was being selected as the main contractor for Peacock House, a new build in Aldeburgh, Suffolk which was awarded a National and Regional RIBA award and was longlisted for Grand Designs House of the Year in 2017.

We spoke with Director, Nick Phillips, following their recent purchase of their GeoSLAM ZEB Revo RT to get an understanding of how this was helping to support their business. Previously, external companies were appointed to produce the 2D surveys which proved to be expensive, time consuming and not without errors and omissions.

Traditional 2D surveys instructed, would only take limited data, meaning important details on areas, such as staircases were incomplete. Inevitably there were times during the later stages of design and construction that the absence of such details required re-working of proposals. The manual process was also not very efficient, as it could take a full day for 1 person to survey a 3-bedroomed house and several weeks to receive the results. Nick identified that projects with existing structures should always start with comprehensive 3D data, which led to the purchase of the GeoSLAM ZEB Revo RT to enable 3D data capture in-house.

Before purchasing the ZEB Revo RT, other scanners were considered, such as terrestrial and static, but there were time and software limitations to adopting these more traditional systems. Using these methods was not efficient enough for Builders by Design, as they needed technology with speed, accuracy, and ease of use. Using GeoSLAM handheld solutions meant they could complete between 6-8 scans a day, with the accuracy they needed, whereas a static scanner may only achieve 1-2 scans a day. With current Covid-19 restrictions, having a single operative on site for only 30-minutes to complete the internal and external data capture can bring logistical advantages where a property is still occupied.

Builders by Design have integrated the ZEB Revo RT as an integral part of their digital workflows, providing all the stakeholders with dynamic visualisation material for project design. They use the ZEB Revo RT to scan the 3D point cloud, importing the data into CAD software to create 3D models and 2D planning documentation for the design team. Working in 3D environments together with other visualisation tools has also created a transparency and understanding of design intent between the Architect, the site team and the client that could not have been achieved with 2D plans, sections, and elevations.

Having utilised the GeoSLAM ZEB Revo RT in-house to identify the many benefits to the business, they plan to collaborate with external Architectural and Design practices undertaking their own digital transformation journey, to build templated 2D documentation of existing buildings, 360° site photos, 3D model and bespoke CAD packages. In closing, Nick emphasised that:

Surveying Without the Baggage 

Industry

Facilities
Management

Scan time

10 minutes

Location

Billund,
Denmark

Size

5400m2

Scanned

Airport
luggage facility

“Billund Airport (BLL) in central Denmark is the second largest airport in the country, processing over 3 million travellers a year. Quite a few of the arriving tourists head to the original LEGOLAND resort which is situated nearby.

Similar to many airports, conveyor belts in the BLL departure terminal carry luggage down to the central baggage room for automated sorting before being loaded onto trolleys for the final few metres out to the waiting aircraft. With a ceiling nearly five metres high, the baggage room is a three-dimensional maze of ascending and descending conveyor belts, support structures, catwalks and HVAC piping.

A 3D model was needed to help determine if new conveyor belts could be threaded through the existing features for the expansion.

As long as it takes to capture the scan data, that’s how long GeoSLAM Hub takes to process it. That is what is amazing about this technology

Early in the project planning stage, BLL wasn’t sure how much detail they would need to proceed with the expansion design. We had worked extensively with the GeoSLAM ZEB Revo solution on multiple post-construction quality control jobs and were confident that the handheld device would provide an impressive level of detail in a short amount of time. In fact, it took less than 10 minutes.

After scanning the space, the data was imported into GeoSLAM Hub and the pointcloud was processed in just ten minutes as well.

To further demonstrate the detail of the data collection, LIFA sent a 30m2 section of the point cloud to a subcontractor for feature extraction and modelling. We had quite an amazing set of data, The 3D model included floors, walls, ceiling, conveyor belts, beams, cable trays, lights, railings, pipes, and structural features.

3D model of Billund baggage handling area

Close up 3D model of Billund baggage handling area

BLL officials were so impressed with the level of detail captured by the ZEB Revo, the information formed part of a more detailed model for a tender to upgrade and expand the belts and sorting for arriving baggage.

Historic England map out damaged Ramsgate tunnels for redevelopment

Location

Ramsgate,
UK

Scan time

10 mins per
scan

Size

1km in
length

Scanned

Underground
tunnel

Industry

Conservation

There is no doubt that historical projects hold great significance for a location’s cultural heritage and its people. This is the fundamental concept that Historic England apply in their protection and conservation of sites that define English history and the nation itself. They work within communities and alongside specialists to share their knowledge and skills so that everyone can enjoy and maintain the history that surrounds us.

This is evident in Historic England’s Ramsgate Tunnels project, a five-kilometre network of underground passageways which were paramount to the war effort and the safety of local people of Ramsgate, Kent.

Ramsgate Tunnels were once used as an underground narrow-gauge railway, built to connect the town and docks to help improve trade links to Europe. However, the railway soon became a target for enemy bombing. To combat this, it was decided that the network of tunnels should be adapted to protect the people of Ramsgate, and work on this began in 1939.

“GeoSLAM technology was at the top of our list to scan the underground network, primarily due to its long range capabilities”

After falling into disrepair, leaving behind a long-existing collapse in one area of the tunnels, our team at Historic England was invited to work alongside Ramsgate’s Heritage Action Zone in order to redevelop the area’s much-loved historical sites. Enlisting the help of GeoSLAM’s ZEB Horizon to provide a preliminary map of the damage, plans were put in place to assess tunnels that were previously inaccessible in order to extend visitor access.

Mapping damaged underground passageways
Ramsgate tunnel

The ZEB Horizon allowed our team to reach further down each channel where we needed a quick overview of the extent of the damage, and its approximate location relative to the surface. A total of nine scans comprised the complete survey, taking around 10 minutes for each scan. Compared to a static scanner, GeoSLAM’s ZEB Horizon improved the speed of the scanning process dramatically

GeoSLAM Sample Data

View and download data in our free point cloud viewer

Here’s some helpful tips for the best viewing experience

  • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
  • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
  • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
  • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

Falkirk Wheel

Location: Falkirk, Scotland
ZEB Scanner: ZEB Horizon
Scan time:
40 Minutes

This data was captured as part of the Big SLAM Tour of the UK, read about it here.

Would you like to see a specific dataset that’s not on this page? Contact [email protected]