Content Hub

Keep up to date with our Content Hub for engaging thought leadership industry news and GeoSLAM updates.

Q&A with Bert Meuleman, GeoSLAM Belgium dealer

Learn more
reykjavik

GeoSLAM goes North with new dealer in Iceland

Learn more

Autonomous Mapping in Harsh and Hostile Environments

Learn more

GeoSLAM Partners with Microsol Resources

Learn more
real estate

GeoSLAM helps leading media company Zien24 revolutionise their digital workflow

Learn more

New partnership for GeoSLAM and NORMET

Learn more
office news hero

Senior Promotion to bolster GeoSLAM growth

Learn more

Home renovation made easy with the ZEB Family

Learn more

GEO Business and SPAR 3D Expo: A tale of two events

Learn more
office news hero

Getting to know you: Abhishek Bhartiya

Learn more
geomesure service centre

GeoSLAM expands service centre in France with Geomesure

Learn more
zeb horizon manhole

Safe, fast data capture with ZEB REVO on waste management project

Learn more
zeb horizon uav

The Dos and Don’ts of Aerial Surveying

Learn more
geoslam trade in

Experience Strongest Ever SLAM with our upgrade campaign

Learn more
geospatial commission

GeoSLAM responds to the Geospatial Commission

Learn more
STEM image

Attracting and Retaining the Next Generation of Talent

Learn more
geoslam team

Global expansion on the horizon for GeoSLAM

Learn more
natwest business hub

GeoSLAM feature on NatWest Business Hub

Learn more
csiro visit

GeoSLAM Welcomes CSIRO Visitors to UK HQ

Learn more
working in schools

GeoSLAM providing inspiration in maths

Learn more
science channel

GeoSLAM mobile technology features in Science Channel Series in the US

Learn more

GeoSLAM launches new ZEB-HORIZON 3D Mobile Scanner

Learn more
zeb revo rt scanning

GeoSLAM Launches Game-Changing Technology in the UK during Digital Construction Week

Learn more

Importance of safety berms at dump sites

Learn more

KTP Case Study: Predictive Monitoring of Rail Infrastructure

Learn more

Scanning through wire mesh with SITEMONITOR LIVE

Learn more
zeb revo hero image

PROCESSMONITOR LIVE shotlisted for Tunnelling Award!

Learn more

Automated Stockpile Volume Monitoring

Learn more
3dlm geoslam merger

3D Laser Mapping & GeoSLAM Global Merger Announced

Learn more

GeoSLAM’s CSR Strategy to Promote Students’ English Skills

Learn more

The benefits of measuring Shotcrete during application

Learn more

GeoSLAM to Demo Fast, Easy and Versatile 3D Mobile Laser Scanning at 2018 SPAR3D Conference

Learn more

GeoSLAM to showcase the Future of Construction at Geo Business 2018

Learn more

GeoSLAM take Geoterra to new heights with ContextCapture Solution from Bentley

Learn more

GeoSLAM announces distribution agreement with Cansel in Canada

Learn more

GeoSLAM and Corporate Social Responsibility

Learn more

GeoSLAM Academy Events prove a hit with customers

Learn more

Quickly and Safely Mapping our Underground World

Learn more

GeoSLAM announces UK distributor agreement with KOREC

Learn more

GeoSLAM celebrates 5 years in business with new HQ, record growth

Learn more

GeoSLAM Launch Time & Cost Saving 3D Mobile Laser Scanners at Dallas Fall BIM Forum 2017

Learn more

GeoSLAM and Bentley Systems join forces to take mobile reality modelling indoors

Learn more

GeoSLAM Changing The Economics of 3D Laser Scanning with new product launches at INTERGEO

Learn more

Verity – GeoSLAM Collaboration Advances Real-Time Construction Quality Management

Learn more

Reducing Scanning Time of Historic Sites from Weeks to Hours

Learn more

Record Six Months for GeoSLAM Thanks to Boom in Digital Engineering

Learn more

GeoSLAM Unveils Predictions for Engineering’s Digital Future

Learn more
oriel college

University Challenge: To Deliver Rapid 3D Results in Half the Time

Learn more
world map

GeoSLAM Global Network Expands Both East and West

Learn more
countryfile live

GeoSLAM to feature in upcoming BBC Show Countryfile

Learn more
forestry data

Making Forest Surveys a Walk in the Park

Learn more
st louis

GeoSLAM signs up Seiler Instrument for Midwest USA Distribution

Learn more
shanghai

GeoSLAM Expands Far East Operations with New Distributors

Learn more
zeb revo rt in facility

GeoSLAM Announces Real-Time Upgrade For ZEB-REVO

Learn more

Danish Distributor Attends Annual Surveying Congress

Learn more
attucks school

GeoSLAM Scores Top Marks at Century Old School

Learn more
bam project

Rapid Mobile Scanning for As Built Building Surveys

Learn more
what is slam hero

Taking care to save costs and minimise disruption without compromising accuracy

Learn more
forensics car accident

The Future of Hazardous Unmanned Mobile Mapping

Learn more
zeb cam

GeoSLAM Launches Zeb Cam for Zeb Revo

Learn more
revo on mini robot

GeoSLAM and Blackdog Robotics sign partnership agreement to supply unmanned mobile indoor mapping solutions

Learn more
whichmann awards

GeoSLAM Zeb Revo Shortlisted for Wichmann Awards

Learn more
coast

ZEB1 makes history, mapping Brei Holm for BBC’s ‘Coast’

Learn more
cape town

OPTRON Appointed as GeoSLAM Dealer for Sub Saharan Africa

Learn more
hardwick hall scan

GeoSLAM Announces Global Distribution Agreement for 3D Reshaper & PointCab

Learn more
rising star cave

Laser Scanning the Rising Star Cave in the Cradle of Humankind, South Africa

Learn more
cowi floorplan

Engineering results ten times faster than traditional survey methods

Learn more
jargon

Laser Scanning Jargon

Laser scanning technology may sound complicated but sometimes it’s just about knowing the right terminology. This quick guide can help you to understand more about 3D laser scanners and how they work.

Click the letters to see the terms alphabetically. If you think we’re missing any words, please drop us a line!

Accuracy: This can be described as the degree of closeness of measured quantity to its true value. Accuracy shouldn’t be confused with precision. Read more on the Accuracy and Precision blog.

Amplitude: The raw measurement of the power strength of the return echo. It is the value of the power of the light that we receive back from the target. Later on, during real-time post processing, we receive amplitude which is defined as the ratio of the actual detected optical amplitude of the echo pulse versus detection threshold of the instrument. Thus, the value of the amplitude reading is a ratio, given in the units of decibel (dB). By introducing amplitude readings in this way we can use it to improve the object classification. Amplitude depends on the distance, further away the scanner is from the target the less power it receives.

Angle of incidence: Assuming a locally flat target (approximated by a plane), the angle of incidence is the angle between laser axis and the plane’s normal vector.

Angular resolution: This is a parameter of the scan mechanism. It corresponds to the minimum possible angular distance between two consecutive laser measurements.

Beam diameter / beam width: The diameter of the laser beam perpendicular to the beam axis. Since beams typically do not have sharp edges, the diameter can be defined in many different ways.

Beam divergence (angular width): An angular measure of the increase in beam diameter with distance from the optical centre from which the laser beam emerges. Angular width is an angle described by the beam at the source.

BDS: BeiDou Navigation Satellite System is a Chinese satellite navigation system. It consists of two separate satellite constellations – a limited test system that has been operating since 2000, and a full-scale global navigation system that is currently under construction.

Coordinate System: Coordinate systems enable geographic datasets to use common locations for global positioning. A coordinate system is a reference system used to represent the locations of geographic features, imagery and observations.

Decibel: (dB) A unit that indicates the ratio of a physical quantity (usually power or intensity) relative to a specified or implied reference level.

Detection Threshold: Within any well-designed RADAR and LIDAR receiver, not only are echo signals present, but noise is too. In order to detect a signal as an echo signal, the signals are compared against a threshold within the receiver. For echo signals with an amplitude corresponding to the threshold value, the detection probability is 50 %, half the echo signals will be detected while the other 50 % will be missed.

Diffusely Reflecting Target: This is a target that is characterised with the property to reflect  light in many angles rather than at just one angle as in the case of specular reflection. In LIDAR, Lambertian reflection is often used as a model for diffuse reflection. Rough surfaces (roughness in the scale of the laser wavelength), e.g., raw masonry, are well modelled as diffusely reflecting targets.

Drift: Data ‘drift’ can occur if the user moves too quickly, or if there are not enough features for the SLAM

Dynamic range: The dynamic range is a property of the receiver within the laser scanner that gives information about the range of echo signal amplitudes the receiver can work with. Distant targets with a low laser radar cross section will give echo signal amplitudes near the detection threshold. Nearby retro-reflecting targets will give huge echo signal amplitudes. The ratio of the largest echo signal the receiver can handle to the detection threshold is the dynamic range of the receiver.

Echo digitization: The process of sampling the analogue electrical echo signal and converting the analogue signal into a stream of digitized samples. Echo digitization is carried out by so-called analogue-to-digital converters (ADC).

Echo signal: Similar to acoustics where an echo indicates a reflection of sound from a distant object. The echo signal in laser scanning is the reflection of the emitted laser pulse arriving with a delay, the time of flight, at the laser scanning device. The term echo signal may address the optical signal arriving at the device, but also the electrical signal inside the receiver electronics of the device.

Full waveform analysis: This extracts a range information and additional attributes on targets from digitized echo signals. Full waveform analysis is carried out off line, on digitized echo signals from a LIDAR instrument, stored during data acquisition on a data recorder. A prominent algorithm for full waveform analysis is Gaussian decomposition based on the underlying assumption of a nearly Gaussian system response. The additional attributes of Gaussian decomposition are amplitude (electrical regime) and pulse width estimate.

Galileo:  The global navigation satellite system (GNSS) that is currently being created by the European Union (EU) and European Space Agency (ESA), headquartered in Prague in the Czech Republic, with two ground operations centres, Oberpfaffenhofen near Munich in Germany and Fucino in Italy.

GLONASS: (Acronym for Globalnaya navigatsionnaya sputnikovaya sistema). Global Navigation Satellite System, a radio based satellite navigation system operated for the Russian government by the Russian Space Forces.

GNSS: (Global Navigation Satellite System). This refers to a constellation of satellites providing signals from space transmitting positioning and timing data. GNSS provides global coverage. Examples of GNSS might be the USA’s NAVSTAR Global Positioning System (GPS) and Russia’s GLONASS.

GPS: This is the USA’s NAVSTAR  ‘Global Positioning System’. It is a space-based global navigation satellite system (GNSS) that provides location and time information in all weather conditions, anywhere on or near the Earth, where there is an unobstructed line of sight to at least four GPS satellites. GPS is maintained by the United States government and is freely accessible with some technical limitations. GPS receivers deliver the position data, without further transformation, in the WGS84 coordinate system.

Integrated IMU/GNSS system: (Concerns mobile and airborne laser scanning) An integrated IMU/GNSS system consists of at least an inertial measurement unit (IMU) and a GNSS receiver, and provides the trajectory of the IMU coordinate system by post-processing raw data from IMU, GNSS receiver, and a GNSS base station. By mechanically fixing the IMU to the laser scanner, the trajectory also gives the position and orientation of the laser scanner over time so that the point cloud provided by the laser scanner can be transformed into the coordinate system the trajectory is specified in (usually WGS84).

Laser class: Lasers are classified by wavelength and maximum output power into four classes and a few subclasses. The classifications categorize lasers according to their ability to produce damage in exposed people, from class 1 (no hazard during normal use) to class 4 (severe hazard for eyes and skin).

Laser footprint: The beam diameter at the target’s range.

Laser pulse: LIDAR sensors emit short laser pulses of pulse widths of a few nanoseconds as collimated laser radiation.

Laser radar cross section: Laser radar cross section (LRCS) is a target property. It can be conveniently used to calculate the expected echo signal amplitude when system parameters and the target’s distance are known. The LRCS is the product of three components: the actual area interacting with the laser beam (for targets smaller than the laser footprint), the reflectance of the target, and the directivity of the reflection. The directivity is quite low for diffusely reflecting targets, but very high for retro-reflecting target.

Laser rangefinder: A laser rangefinder is a device that measures distance from the device to a target.

Laser scanner maximum range: Maximum range is the maximum achievable target range up to which the laser scanner can perform range measurements. The maximum range depends strongly on the target characteristics (reflectance), but also an atmospheric visibility and sun light illuminations of the target.

Loop Closure: To start and end a scan in the same place. It is essential that a loop is closed when scanning with a SLAM based system so the sensor can match the features and complete the scan.

Measurement rate: This gives the average number of measurements per second and depends on the PRR (pulse repetition rate) of the laser and the actual scan range.

MTA (Multiple Time Around): This is the situation that might occur while scanning when several laser pulses are emitted before the echo from the previous laser pulse reaches the laser scanner. It means that multiple pulses are ‘in the air’ simultaneously. It depends on range to a target and laser pulse repetition rate.  Ranging becomes ambiguous, i.e. assignment of the echoes to their corresponding laser pulses is not possible without additional information. This is often referred to as multiple time around (MTA) problem.

Multiple-time-around capability: When scanning at long ranges with a high pulse repetition rate, there can be multiple laser pulses in the air simultaneously. In this scenario, a return pulse can be received by the scanner after the subsequent pulse or pulses are emitted, so an ambiguity is introduced. If the scanner assumes the received returns correspond to the immediately preceding emitted pulses, the range to the target feature will be underestimated. It moves points to another zone automatically, calculating the time offsets to assign returns correctly. You can also perform this manually depending on different conditions. The MTA algorithm is employed by RiMTA and has to be supported by the hardware configuration of the laser scanner.

Multi-target resolution: The correct detection of two following echoes depends on the sampling rate and the time taken for the receiver to ‘reset’ after each echo is received. Targets situated closer than the multi-target resolution might result in ‘false points’ in between.

Point cloud: A point cloud, sometimes also addressed as cloud of points, is a set of points with coordinate values in a well-defined coordinate system. Beside the coordinates, each point of the point cloud has valuable additional attributes, such as timestampamplitudereflectance, and pulse shape deviation.

Precision: (also called reproducibility or repeatability) The degree to which further measurements, under unchanged conditions, show the same results. By taking averages over a group of measurements, the precision can be improved, but not the accuracy. Read more on the Accuracy and Precision blog.

PRR (Pulse Repetition Rate): the value indicates the (average) pulse repetition rate or frequency with which the laser of the rangefinder emits pulses.

Pulse shape deviation:  The pulse shape deviation is one of the additional attributes to each point of the point cloud. Low values indicate that the echo pulse shape does not deviate significantly from the system response. High values hint to echo signals with a significantly different pulse shape, which may arise from, e.g., merging echo pulses from several targets hit by the laser beam at only slightly different ranges.

Range gate: The difference between the maximum range and the minimum range the laser scanner is capable of performing range measurements is called range gate. Instruments with multiple time around capability have no range gate.

Reflectance: A target property. Refers to the optical power that is reflected by that target at a certain wavelength. The reflectance provided is a ratio of the actual, optical amplitude of that target to the amplitude of a diffuse white flat target at the same rangereading is given in decibel (dB). Negative values indicate diffusely reflecting targets, whereas positive values are usually retro-reflecting targets. Reflectance is distance independent, thus is a perfect attribute for many different classifications and further processing.

Retro-reflective target: A target with a high directivity of the reflected laser radiation. Examples of retro-reflective targets are reflective foils, corner cube reflectors, and retro-reflective paintings.

Scan mechanism: This consists of a fast rotating polygon mirror and a slower rotating optical head. The rotating mirror deflects the laser beam into different directions whereas optical head rotates slowly to cover the full circle of 360 degree. The optical head carries and moves the whole line scan mechanism.

Scan frequency: The number of scan lines per second.

SOCS: (Scanner’s Own Coordinate System) is the coordinate system in which the scanner delivers the raw data. The location and orientation of the SOCS with respect to the scanner’s housing is usually defined in the User Manual.

SLAM: Simultaneous Localisation and Mapping is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent’s location within it. To find out more about SLAM read our article: SLAM – It’s in our name

System response: The system response indicates the shape of the echo signal within the receiver of the laser scanner system after ADC (analogue to digital converter) conversion, resulting from interaction with a flat target at normal incidence.

Time of flight (TOF): TOF is the time that laser pulse takes to reach the target surface and comes back to the laser scanner’s receiver divided by two. The range to the target is calculated based on the knowledge of the velocity of the pulses in air (propagation medium).

Time stamp: After data is processed ( within the scanner) the “time stamp” attribute is assigned to each point of the point cloud giving precise information on the emission time of the laser pulse, i.e., the time the range to the target has been measured. Assuming the time information of a GNSS receiver has been provided to the laser scanner (PPS signal and time info datagram), the time stamp is in the domain established by the GNSS receiver, usually UTC or GPS time.

Trajectory: By definition a trajectory is the path that a moving object follows through space as a function of time. The term trajectory describes not just position over time, but position and orientation over time. The trajectory in mobile laser scanning systems and airborne laser scanning systems describe the position and orientation of the IMU over time. The trajectory is the output of the integrated IMU/GNSS system.

UTC: Coordinated Universal Time is the primary time standard by which the world regulates clocks and time.

Visibility: In meteorology, visibility is a measure of the distance at which an object or light source can be clearly recognised. To define visibility, a perfectly black object against a perfectly white background is viewed. At the distance equal to the visibility, the contrast ratio between black and white object is only 2%.

Voxel: A unit on a regular grid in 3D space (a 3D pixel)