Skip to content

Handheld mapping reduces skyscraper scan time by 30 hours




10 hours


Belo Horizonte,


8,357 sq/m



“In the city of Belo Horizonte, there is a distinct mix of contemporary, classic and historic buildings on display, making it a really attractive destination to visit. What comes with the architecture on offer however, is the need to preserve it for tourists and future generations to enjoy.

Often the fragility of buildings or lack of resources means that many buildings go untouched for decades, leaving them to crumble. It’s my job to ensure these relics remain.

When the chance to retrofit electrical installations and a fire prevention plan to a 130-metre art deco skyscraper, the Acaiaca Building, became available, the team at Paragram knew we had to be involved.

We were very impressed with the quality of information captured by the ZEB Revo.

Built in the 1940s and once used as a nightclub, cinema, shops and air-raid shelter, the building required some attention in order for it to meet safety standards. Having initially planned to measure the 8,357 square metre building using manual survey methods, estimates told us this would have taken three employees over 40 hours to complete an as-built structure.

Working alongside contractors at Criar Projetos E Consultoria, Paragram decided to use GeoSLAM’s ZEB Revo, known for its ability to quickly generate images to within a few centimetres of accuracy. With the handheld device, the job was expected to take around 10 hours in total, reducing the workload dramatically.

Acaiaca Building

With just two operatives and in under 10 hours, we managed to complete a scan of the building’s interior, with one walking through the building holding the device and another taking a photographic record. This innovative way of working meant we were able to gather much more information than first anticipated, including the registration of beams and roof trusses, electrical installations and engine room areas.

The ZEB Revo is a real game changer for the architecture industry.

As a team, we were very impressed with the quality of information captured by the ZEB Revo, which was easily incorporated into a BIM representation using Revit software.

Almost every renovation project is governed by strict time constraints, but with GeoSLAM’s device and its ability to rapidly scan large areas, it is a real game changer to our industry. With products like this at our disposal, I am excited about what the future will hold for heritage buildings in need of a little TLC.

paragram logo

Oxford Archaeology scan three historic sites in under 48 hours




48 hours




Three sites
across Israel


Historic Sites

“48 hours to scan three historic sites in Israel – ambitious or impossible? Equipped with a handheld 3D mapping device from GeoSLAM, we were determined to find out. Our first stop was the Schneller building in Jerusalem. In its 160 year history it has been used as an orphanage, barracks and ammunition arsenal. A few years ago, an archaeological team unearthed the remains of a Roman bath house and winery underneath the site. The next stage of the building’s history is a conversion into a museum of Judaism – hence the requirement for a complete, high-accuracy survey of the site.

Made up of four floors, 130 rooms, an outer courtyard and a number of stables, we needed to work quickly to scan the entire site. Using the handheld ‘go-anywhere’ ZEB Revo, in three – 30 minute scans he captured the entire building, including survey control points to georeference the data. Using traditional scanners, this would have taken several weeks and involved multiple set-ups.

With the ZEB Revo, what use to take weeks can now be done in hours

Next stop was an elegant and beautiful 12th century Benedictine monastery. With no more than 30 minutes between the end of the Vespers – the evening service – and the time when the public would be allowed into the monastery, we carried out a quick reconnaissance and accurately captured the unique domed building, only possible using GeoSLAM’s ’go-anywhere’ device.

Panorama of Jerusalem Old City with Church of the Holy Sepulchre, Israel

Final port of call was a delapidated 19th-century merchant house in the ancient Arab town of Jaffa. The challenge here was to record the building while construction works were in progress, with hoardings and scaffolding obscuring structures. A near impossible task, but the ZEB Revo was still able to collect survey-grade data in a matter of hours, which formed the basis of a working record of elevations, sections and plans.

In under 48 hours Jamie had captured highly accurate 3D images of 3 heritage buildings. Proof indeed that with the ZEB Revo, what used to take weeks can now be done in hours.

oxford archeology logo

Creating 2D Floorplans for a residential Home


Kent, UK

Scan time

30 minutes per scan


23 rooms measuring 663m2






Surveyors need to accurately capture, manage and utilise 3D spatial information – often in environments where there is very limited time on site. Omega Geomatics, a land surveying practice in the UK, took on one such task when they produced 2D floorplans for a nursing home, while the site was occupied 24/7. Paramount was ensuring minimum disruption to residents, while still achieving a high level of accuracy.

With the building measuring 663m2 and with 23 residential rooms, communal and staff areas, the project team needed to find a new surveying method that meant they could walk and scan each resident’s room quickly without disrupting their daily routines.

Two surveyors visited the nursing home and coordinated five spheres by the building exits on multiple levels. With GeoSLAM’s ZEB Revo, and its speed of capture capabilities, the team were able to walk around the building and capture the data needed from each room within just 10 to 20 seconds.

With just two team members required for the project and less time expended on site, the overall cost was dramatically reduced

The team conducted long-distance checks and height measurements. External scans took place, as an extra accuracy check. The entire scan took just 30 minutes, and the client was provided with accurate 2D floorplans within 24 hours, notably without any distress or disturbance to residents.

The project required just two team members and this rapid data collection had huge cost-saving benefits. In turn, this led to less time spent on site, which also contributed to reducing the cost, all without compromising on accuracy. The scan achieved an average +/-15mm which met the needs of the client.

Eaton Lodge

Virtually recreating the Old Tucson Studios




Two hours




42,000 sq/m


Outdoor Film

Between tours and filming, Old Tucson Studios is a dynamic environment that couldn’t shut down to accommodate our University of Arizona 3D scanning team. With the equivalent of four city blocks and dozens of building exteriors and interiors to scan, we had to move fast. The team relied on the ZEB Horizon mobile scanner equipped with the ZEB Cam to quickly and accurately capture the geometry, architecture and appearance of the film set.

We want film buffs to experience Old Tucson Studios the way it looked during its heyday when some of Hollywood’s biggest Western movies were filmed there. The colorized point clouds generated with the GeoSLAM devices will serve as the core data set upon which 3D models, and eventually, Virtual and Augmented Reality experiences will be created. Archived air photos and drone imagery, as well as photogrammetric measurements pulled from original films, will also help us create digital versions of the movie studio at key points in its history.

The ‘Downtown Tucson’ main street and plaza stretch almost a quarter mile. Stationary scanners may seem like the obvious choice for long-range data capture, but there wasn’t time to set up and take down those types of devices. And we needed richer detail. Our scan technician held the mobile ZEB Horizon and moved quickly through the streets, dodging studio personnel and vehicles. She entered those buildings with real interiors and scanned them as well.

Scanning with the ZEB Cam adds context to the point cloud. The scanner with mounted camera was held steady at chest level. At each building, the technician stopped and pointed the device directly at the façade as if snapping a still photo, and then slowly turned around to scan the surroundings. This captured a rich 3D scan data set for each structure along with its context on the movie set.

I’ve seen the quality of the point cloud and it’s amazing

The entire Downtown Tucson portion of the studio was scanned in two hours. Afterwards, the technician processed the scans and video footage into a colorized point cloud running the ZEB Hub software on a standard laptop. Extraneous people and vehicles were filtered from the point clouds later with an open-source third-party software.

Downtown Tucson with the saloon on the left
Downtown Tucson with the saloon on the left

We will build 3D representations of the studio at major periods of its history – 1938 when it was built for the film Arizona, the 1950s and 60s when four John Wayne Westerns were shot there, and the mid-1990s just before a devastating fire. This will require merging the 3D models of today with archived air photos and film photogrammetry to re-create buildings that no longer exist.

In the future, you will be able to walk the Old Tucson Studios lot wearing a VR headset and ‘see’ how the site looked during filming of epic motion pictures such as Rio Bravo, Gunfight at OK the Coral, and Tombstone. Who knows? John Wayne himself might swagger out of the saloon doors right in front of you.

Mapping a gold mine with the ZEB Horizon



Scan time

15 minutes
per scan




5 miles of
mine tunnels



The state of Nevada is currently the fifth largest gold producer in the world. First discovered in 1849 by prospectors on their way to the California gold rush, gold and later silver caused several booms, with production really picking up in the 1960s thanks to new metallurgical techniques which meant recovery of more gold than ever before. Looking at old mines from the 1800s with our modern perspective provides great opportunities.

Newrange Gold is bringing new things to old places at the Pamlico project, which was one of the highest-grade gold districts in Nevada in the 1880s. Records of the mine workings are lost and the workings have never been systematically studied, leaving an enormous opportunity to map, survey, and sample the old exposures. With 5 miles or more of historic mine tunnels dating from the period of 1884 to about 1928, you can understand why no-one has done it before: it would be too time-consuming and costly to do with conventional surveying.

My company, Carrington Consulting, invested in the ZEB Horizon to expedite surveying, mapping and sampling at our client company, Newrange Gold Corp., at the Pamlico project. Systematically scanning the complex, interconnected workings has generated an unprecedented 3D map of the mine workings and has resulted in greater than 50% savings to date over conventional surveying and mapping techniques.

Our experience with the ZEB Horizon so far is vastly superior to traditional methods and is an indispensable part of my exploration toolkit.

In addition to revealing very subtle structural details of the geology, this mapping will form an essential part of modelling historic production and the remaining gold resource at the project going forward. This revolutionary hand held LIDAR scanning technology allows us to complete extremely accurate underground geological and sampling maps, volume analysis of material moved, and careful planning of exploration drilling to better calculate mineral resources in preparation for possible resource definition and mining at Pamlico.

Carrington Consulting’s team is scanning more than 5 miles of tunnels at Pamlico for Newrange. These workings extend over an area more than 1,500 feet long and 800 feet wide with a vertical depth of roughly 300 feet and form an extensive network of adits, tunnels, stopes and raises with at least 30 major entrances that are largely interconnected. Scanning is tied to established surface survey control for registration and orientation so the scan can be accurately carried underground. Underground survey control points are established using a series of spheres to allow Newrange’s geologists to later reoccupy the points to complete the geological mapping.

Many of the mine workings are less than a metre wide and in some cases, they are also less than a metre high following the gold vein, wherever it goes, forming a very irregular, complex network of tunnels and stopes. It would be prohibitively slow and expensive to do this essential mapping with conventional surveying or terrestrial scanning, but the ZEB Horizon makes it realistic for Newrange to accomplish this ambitious goal.

As always safety is paramount, especially when entering old mine tunnels and stopes. With the 100 meter distance capability of the Horizon no one needs to go into unsafe areas. In addition virtually every timber, ladder, and detail are recorded.

We have produced highly accurate data of mine workings up to ¼ mile in length in less than 15 minutes, which changes the game for Newrange at Pamlico. As Newrange gathers information on gold grades from sampling throughout these workings, we are integrating additional layers of information to build a comprehensive 3D model of the geology across the entire area of old underground workings.

Newrange Gold logo
Newrange Gold logo

Midland Survey uses GeoSLAM to scan nearly 200 rooms at Oxford University



Scan time

30 mins per


Oxford, UK


12,000 sq/m



“Midland Survey are experts in surveying complex and difficult to access spaces where there is limited or no GPS, but Oriel College with its labyrinthine network of historic buildings brought a particular set of challenges.

 Oriel College, part of the prestigious University of Oxford in the UK, is nearly 700 years old, with around 200 rooms across five stories including an “island site”, accessible only via tunnel. The structure has been extended over the years and no accurate floor plans or elevation drawings exist.

As a world-class institute, it is occupied 24/7 and opportunities to accurately scan with minimal disruption are few. Traditional tools were not an option due to the network of rooms spread across 5 stories.

Due to the lack of GPS coverage in the tunnel, the only option was to use GeoSLAM’s ‘go-anywhere’ ZEB Revo. The unusual shape of the building, with its unconventional layout and complex network of rooms, meant it was too difficult and time-consuming to survey with traditional static scanning methods (as this would require multiple individual set-ups and increased post-processing work). We needed a lightweight, mobile tool that works well in enclosed environments.

The entire project was completed in around half of the total time that would have been required using static equipment. The ZEB Revo is a real game-changer for us.

Using the ZEB Revo around 200 rooms were scanned, amounting to 12,000m². Across 5 days, 12 individual rapid ZEB Revo scans were completed each taking just 30 minutes. The entire project was completed in around half of the total time that would have been required using static equipment.

We frequently work in hazardous environments, as well as in complex and difficult to access spaces where there is limited or no GPS coverage such as heritage buildings with thick stone walls. We often have limited time on site to accurately create a 3D model. Access to user-friendly technology such as the ZEB Revo that scans multi-level environments and produces accurate and high-quality 3D survey data, is a real game-changer for us.

Quad of Oriel College in Oxford – England

Minnesota Manholes – Scanning Safely and Quickly in Confined, Hazardous Spaces








Sewer pipe

Public works and energy utilities are continually looking for new ways to protect the safety of their personnel in the field. With the help of the GeoSLAM ZEB Revo mobile laser scanner and the specially designed GeoSLAM Cradle, the cramped and hazardous spaces in manholes can now be captured in 3D without putting field workers at risk.

 “An engineering survey firm scanned the interiors of 4,500 manholes with the ZEB Revo for a Minnesota municipality,”

What lies beneath the manhole covers found in nearly every city and town varies considerably. Some are access points to extensive storm water and sewer pipe networks. Others are entries into utility conduits through which water mains and electric lines are run. A few manholes are simply tight underground spaces where key pieces of municipal infrastructure reside.

Regardless of their function, manholes and the assets they contain are difficult and sometimes hazardous to map. Not only are the interior spaces dark, dirty, confined and usually wet, they pose potential risks related to cave-ins, poor ventilation and rodent infestations. Above ground, the manhole access points are often in the middle of busy streets requiring set-up of a cone zone to try and protect workers from passing traffic.

You capture the data you need for one job and then have information someone else might need for another without a second site visit.

This combination of hazards compels workers to spend as little time inside the manhole as possible. As a result, they have traditionally captured only the measurements they need for the project at hand – usually with a surveying level rod.

You capture the data you need for one job and then have information someone else might need for another without a second site visit. One of the most common applications is measuring the elevations of pipe inverts to map a water supply or drainage network in preparation for system expansion or maintenance. Personal hazards aside, making accurate asset measurements in a tight underground space with a long level rod can be challenging.

The ZEB Revo is increasingly being turned to for these jobs because the handheld laser scanner is fast, accurate, and captures comprehensive point clouds. Most importantly, it keeps personnel out of harm’s way. Favoured for manhole environments because of its high IP rating, which means it can be used in dirty and wet conditions, the ZEB Revo can be lowered into the underground space with the GeoSLAM Cradle.

manhole cover replacement, sewer system repair, sewerage; roadworks, traffic cones

In just a few minutes, the lightweight device can capture 360-degree scans inside the space regardless of available lighting. Even if the assets being surveyed are offset from the opening or several meters down tunnels, the ZEB Revo captures the 3D scan data needed to generate an accurate point cloud of the subsurface space.

“The first benefit of laser scanning [in manholes] is safety. The second is you collect a very comprehensive and complete data set. You capture the data you need for one job and then have information someone else [in the organization] might need for another…without a second site visit.

frontier precision logo

Accurately Measuring a waterfront apartment Block


Vejle, Denmark

Scan time

30 Minutes


58,000 sq. ft





The Importance of Accurate Measurements in Construction

In Denmark, inaccurate data of floor space in residential or office buildings can have legal implications. Therefore, building contractors must provide accurate measurements for the built floor area for each apartment before a purchase could be finalised.

LIFA Surveyors is one of the leading surveying companies in Denmark. They were recently tasked with collecting floorplan data for a 13-story waterfront apartment building in Vejle. The apartment building, totalling 58,000 sq. ft, was going through construction, and each apartment required accurate measurements of the floor space.

Consequently, LIFA Surveyors needed a solution that could precisely map each apartment at speed and with minimal disruption.

How GeoSLAM Technology is Beneficial for Surveyors

They decided to work with handheld SLAM laser scanners and found that GeoSLAM’s ZEB Revo was the best solution for the job.

The ZEB Revo appealed to LIFA for various reasons but above all the scanner is easy to use, requiring minimal training. As a result, the entire building could be scanned by one person in 30 minutes. Further, the ZEB Revo’s speed of capture combined with its accurate measurements, meant that LIFA could achieve its goals cost-effectively.

We surveyed an entire 13-storey residential building in one and a half hours with only 30 minutes needed for the actual scanning.

Using accurate measurements and point clouds to Create BIM Models

The 3D point cloud data collected by the ZEB Revo was used to create a Building Information Model (BIM). Technicians used the BIM to take measurements of the apartments and common spaces, such as hallways and elevator shafts. During this process, the team visually compared the model against the original design plan to ensure that all building elements were constructed correctly. Due to the efficiency of the scanner, LIFA achieved the accuracy needed for their client.  

The speed of capture and ease of use resulted in LIFA surveyors dramatically reducing their time on interior building survey from days to hours, whilst maintaining high levels of accuracy.

Within days of the scan, LIFA delivered the final measurements to the contractor – a cost-effective solution for both companies.

data visualisation and BIM of apartment created with accurate measurements

Iowa Department of Transport uses SLAM to create 3D models of salt stockpiles



Scan time

10 mins per







At Iowa State DOT (Department of Transport) it is our job to make sure over 24,000 miles of road remains clear and safe to use in winter. We have 109 maintenance areas across the state where stockpiles of salt are kept for distribution. Each facility can each hold up to 1200 tonnes.

Throughout winter salt is loaded onto trucks and spread on roads to stop the surface from freezing. Pay loads are measured in weight as salt is loaded onto spreading trucks and supplies are depleted. But as the salt is used, there is a clear discrepancy between the volume of salt in the shed and the paper records – it is not reliable to just look inside a half-empty shed and assess how much material remains.

 If volume of salt is too low or we don’t know how much is available, we may find ourselves forced to make snap decisions about redistribution which is both costly to the state and inconvenient to residents and businesses alike.

 We needed another solution and following a few severe winters where salt reserves around the country ran out, the Great Lakes froze and shipments were halted we were determined to invest in a reliable measuring process for managing stockpiles in future, which led us to a GeoSLAM volumes solution.

In terms of speed and accuracy, this was a real game changer for us!

Using the handheld SLAM device, we can produce a three-dimensional model of the stockpile in just a few minutes. We have never experienced this level of accuracy before and capturing data was as easy as surveying the site with the naked eye.

The surface of the stockpile is very uneven with lumps on one side and big cliffs on the other where loaders have dug-out salt for spreading, in the past our ‘best guess’ used to involve looking at the stockpile against some markers on the walls of the shed which provided limited accuracy to say the least, so this was a real game changer for us.

Data is then processed using GeoSLAM Hub and imported to the volumes software. As the granules vary in size, we apply a bulk density value as well as defining a floor and perimeter of each pile calculate the total volume of the stockpile in tonnes.

From start to end, the entire process took around twenty minutes. We now have depot staff going out and scanning the stockpiles regularly. This new level of insight means we don’t have to worry about compromising road users’ safety across the state of Iowa as we always know what volume of salt we have available to use.

Glencore uses GeoSLAM to assess risk in underground base metal mine



Scan time

15 mins per




Base metal

When creating underground mapping for mines, mining engineers are often faced with having to work in hazardous and rugged environments, in difficult-to-access spaces and without GPS coverage. In order to address these challenges, mining companies are continuously searching for ways to plan efficient site operations, streamline tunnelling processes and optimise production and personnel safety.

Kidd Mine, an underground base metal mine in Canada and the world’s deepest copper/ zinc mine, epitomises this by adopting new and advanced survey technology. With the aid of GeoSLAM’s 3D mapping technology, the mine is able to assess risk associated with ground and support systems failure, magnitude seismic events, large-scale deformation or rock bursts associated with mining at extreme depths.

Built for harsh and demanding environments, GeoSLAM’s handheld laser scanners are robust, splash-proof and dust-tight (with ratings up to IP64 level). They’re adaptable to any environment – inside or outside, in daylight and darkness – without the need for GPS.

Lightweight and easy-to-use, you can walk and survey accessible areas quickly and easily – even those which are normally off-limits. For more confined or unreachable places, they can be attached to trolleys or mine vehicles for remote monitoring.

It’s critical data that will help us lower the risk to personnel and keep mines safer

David Counter, a senior ground control engineer at the Kidd Mine, emphasised the importance of using a hand-held laser scanning device to map the underground areas at the mine. “It produces a continuous 3D animation image of whatever underground areas are being scanned as the user walks along the drift. This allows the mine to map out problem areas and to carry out ground support rehabilitation in those areas.”

“The ZEB Revo provides a background dataset that can be used for comparative purposes if a future high-magnitude seismic event occurs or for determining how much static deformation has been occurring due to regional mine closure over time.”

Despite needing to rapidly map mines under intense time constraints, traditional underground survey techniques have proved to be slow. Mine engineers and surveyors all need access to user friendly technology that is easy to install and use,  but is robust and reliable enough to do the job quickly and accurately. Within minutes anyone can be using a GeoSLAM scanner and immediately start creating a 3D point cloud of the area. Data is collected continuously while walking the survey area – with no time-consuming or cumbersome set-up required.

GeoSLAM’s award-winning software instantly turns data into actionable 3D information. So, you can rapidly gain insight into rock mass behaviour and map out deformations in rock walls & complex tunnel profiles. Plus, accelerated survey workflows help you deliver productivity and efficiency improvements, at the same time as helping you hit your zero-harm targets.

“There is a sound basis for SLAM laser technology to define areas where the ground support systems need to be replaced or rehabilitated,” Counter concluded.

Laser scanning in the busy environment of Arc de Triomphe



Scan time

10 minutes




50m tall


Arc de

Alongside our work in land management, engineering and rail sectors, our teams dedicate time for architecture and heritage projects, working to preserve just some of the 40,000 listed historic monuments in France alone. As a geospatial technology specialist, we are aware of the great significance many of our historical monuments hold.

One of the most famous, located at the tip of the Champs-Elysees in central Paris, is the Arc de Triomphe. In order to demonstrate to the Parisian crowds the precision and speed of scanning technology, we enlisted the help of GeoSLAM’s ZEB Horizon.

Recognised as the centre of Paris for its position on the iconic roundabout, and measuring 50m tall, 45m wide and 22m deep, access to the Arc is limited. Yet with the ZEB Horizon and its ability to capture distant elements at a range of 100 metres, the handheld scanner proved to be an effective companion for the project.

The ZEB Horizon was not only fast, but discreet and easy to operate in such a busy environment

With approximately 600,000 visitors per year, accessing the site with a static scanner would be difficult. In order to carry out the survey, the operator walked around the Arc, returning to complete a figure of eight shape, all in one fluid motion and after ten minutes data capture was complete.

Achieving the same results with a static scanner would have taken considerably longer due to the numerous set-ups and the time it takes to complete each scan. The ZEB Horizon was not only fast, but discreet and easy to operate in such a busy environment.

Paris Arc de Triomphe (Triumphal Arch), place Charles de Gaulle in Chaps Elysees at sunset, Paris, France.

GeoSLAM technology was at the top of our list to scan the Arc, primarily due to its accuracy, ‘on-the-go’ method of data collection and fast application. In just 10 minutes of data capture, we obtained 10 million cloud points with 2cm accuracy – together depicting the engravings of war victories as designed by architect, Guillaume Abel Blouet in 1833.

Its ability to capture 300,000 points per second made the ZEB Horizon our technology of choice. Understanding the project’s restrictions due to location and popularity, we’re delighted with the outcome, which demonstrates the importance of mobile mapping devices to historical buildings such as this.

geotopo logo

ZEB Horizon used to Capture data on Croatia’s forest to understand biomass



Scan time

9 minutes




1km in



“47% of Croatia’s total land area is covered by forest, an area of approximately 25,000km2 . Management of these vast valuable assets is a key industry in Croatia and across its central European neighbours. As well as managing the biodiversity and sustainability of the forests, it is important for commercial logging companies to assess the quality and biomass of the forests for responsible timber sales. This assessment is a growing need – every year, Croatia adds 10.5 million m3 of forestry to its stock.

Methods of forestry management typically involve measuring the height, diameter and relative position of trees using equipment such as tape measures, ultrasound instruments, total stations and terrestrial laser scanners. However, there are limitations to these methods – they’re often time consuming, involve multiple setups and numerous members of staff to take the measurements (especially since forestry is usually in remote and difficult to access areas). Due to dense canopy cover, forests are usually GNSS-denied areas, and along with the uneven terrain, it can be difficult and time consuming to measure with terrestrial laser scanners.

Geocentar have a large client base in the forestry industry and upon delivery of our new ZEB Horizon mobile laser scanner, we decided to put the technology through its paces and see how it weighs up against other solutions for measuring biomass.

The ZEB Horizon captures forestry data more accurately than traditional methods and eight times faster

Visiting the Perivoj Zrinskih park, the ZEB Horizon was initialised on a flat surface before the operator navigated around the park at normal walking pace. With a capture range of 100m, It took just 9 minutes in total to walk around the park and capture all the trees.

Back in the office we processed the data with GeoSLAM Hub software, then exported using GeoSLAM Draw. The data was then imported into an open source forestry programme called 3DForest whereupon several parameters could be measured and extracted automatically including ground extraction, tree detection, tree position detection, tree radius determination, tree height determination, tree crowns detection, crowns volume calculation and crowns collision determination.

Later we revisited the park to check the accuracy of their results and re-produced the survey using a total station with built-in REM (Remote Elevation Measurement) and a measuring tape. Not only did it take four minutes per tree to capture data due to all the total station setups, but only four parameters (diameter, height and relative position) could be calculated using these methods. If they had attempted to measure all 217 trees, it would have taken a whopping 14.5 hours!

Using the ZEB Horizon and 3DForest software, it took 9 minutes to scan the park, 12 to process the data in GeoSLAM Hub, 5 minutes to reduce the data size in Hub and prepare the cloud for the forestry software, which took 90 minutes to process. The total workflow took just under two hours to collect and measure all 217 trees – using traditional methods they could have surveyed just 29 trees in this time.

Geocentar calculated that results were accurate to within 3cm and were more accurate than using traditional methods, leading to great cost savings.

geocentar logo