View and download data in our free point cloud viewer
Here’s some helpful tips for the best viewing experience
If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).
Would you like to see a specific dataset that’s not on this page? Contact [email protected]
How Barberton Mines are using handheld LiDAR to improve efficiency and promote safety
Location
Mpumalanga, South Africa
Scan time
Approx. 10-15 minutes per scan
Size
Size differ per solution
Scanned
Barberton Mines
Industry
Mining
Mining in South Africa
The mining industry in South Africa contributes R350 billion to the economy annually, with an estimated R35 trillion of resources left to mine. Mining companies in Africa and across the globe are continually reviewing their ways of working and best practices for mining safely, efficiently, and sustainably. Research and development play a big role in these changes, with early adopters of new technologies benefitting the most.
Barberton Mines has been operational for 130 years and is located in Mpumalanga, South Africa. Consisting of several mines, including Fairview, Sheba, and New Consort, they produce ± 80,000 oz of gold annually.In recent years, Barberton has evaluated new technologies to make its mining processes fast, safe, and cost-effective.
One of the ways in which Barberton Mines investigated new technologies, was by finding ways to improve their survey workflows. They adopted static-based LiDAR solutions to produce accurate 3D models and became one of the first users of handheld SLAM solutions in 2014.
Why did they choose handheld SLAM?
While static-based scanners are highly accurate, the survey team at Barberton Mines needed a quick and versatile solution for the variety of mining methods employed on the different mines and ore-bodies. The goal was simple; to accurately and safely capture data daily for ongoing analysis of the mining production. In addition, they needed a solution that could easily handle the rugged terrain and environment that mines are so often known for.
Barberton Mines chose to reassess their underground mapping technology to improve the speed and accuracy of their survey operations and increase productivity in the mines.
How GeoSLAM fits in at Barberton Mines
Barberton Mines was the first mine in Sub-Saharan Africa to use GeoSLAM technology when they purchased a ZEB1 in 2014. The results and continued success on the mine prompted them to invest in 4 ZEB Revo’s in 2019, which are still in use today.
The ZEB Revo is lightweight and accurate, making it the perfect tool for surveying. The survey team can complete scans of the mines in half the time, and the process is repeatable. These capabilities have contributed to Barberton Mines streamlining their workflows, long-term cost savings, and greater returns on investment.
The scanner’s ease-of-use only requires one person on-site to capture data. Furthermore, it doesn’t require professional training to use the equipment so operators can capture data in parts of the mine that surveyors cannot access for safety reasons. This casts a virtual eye on areas of the mine previously unseen by the surveyors and creates an opportunity to review old tunnels.
Finally, the lack of extensive training required to learn how to operate the scanner benefits new employees and the mine in general. It takes less than an hour to learn how to use the equipment and to process the final point cloud data, allowing surveyors to spend more time assessing final deliverables and finding ways to improve efficiencies in the mining process.
GeoSLAMs scanners have exceeded our expectations and have helped to achieve our goals where other mapping methods could not.” – Thys Smith, Chief Surveyor at Barberton Mines
Solutions
Having originally invested in handheld scanners for underground mapping, Barberton Mines have since adopted the technology for other applications, further increasing their return on investment. The scanners are now operating across three key aspects of Barberton’s mining process.
Production Progress Mapping
The original and most common use for scanning is Production Progress Mapping. Barberton completes daily scans of the mines, bringing the data back for regular analysis of production progress mapping.
The scanned areas are approximately 300 m3 and using GeoSLAM technology, they can scan large areas in about 10-15 minutes. In addition, because the scanners are handheld, production at the mine isn’t compromised by having to stop miners from doing their jobs while scanning is in process.
Using the ZEBs, surveyors no longer need to be underground for extended periods, unlike previous methods. They begin their scans in a safe area, proceed to the mining faces, and finish back in the safe area while capturing the data needed – a completely repeatable and efficient process.
Stockpile Measurements
Barberton Mines has 5-6 stockpiles that make up 4000 cubic tons of material. They frequently measure the volume of these stockpiles, to ensure they have accurate and up-to-date information on their resources.
Simply walking around the stockpiles with a scanner and importing the data into 3rd party software, provides the survey team with all the information they need to produce required reports.
Health and Safety
One example of where scanning has improved health and safety is the mapping of transport shafts. To comply with safety regulations, surveyors frequently scan the shafts to look for rock movement or deformation that might require further investigation.
They found that scanning tunnels from the chairlift with a handheld scanner was quicker than previously used conventional methods, like Terrestrial Laser Scanning (TLS) or by hand. Handheld scanners only require the operator to ride the chairlift down- and back up again, without interfering with production.
The scanners are frequently used in these applications and their robust nature means they have never needed repair or maintenance.
Conclusion
Fast, efficient, and accurate data capture from GeoSLAMs handheld LiDAR scanners have proven to be a huge benefit for Barberton Mines. The repeatability of the scans has provided a great return on investment and the durability has meant that despite being used in challenging environments, the scanners have endured. The increased speed of data capture has led to safer work practices for the surveyors, and the walk-and-scan method has resulted in no disruption to the daily work of the mines.
With the scanner’s versatility, the survey team is still finding new applications where the technology can be utilised in the mining environment.
It is paramount for us to understand our client’s needs, especially in the ever-changing environment of mining. GeoSLAM provided the ultimate mapping solution that best addressed those needs, resulting in improved accuracy and overall productivity.” – Gustav Fick, SME – Subject Matter Expert – UAV & 3D Scanning at OPTRON
ZEB Family | Safely surveying a hazardous power station
All over the globe, countries are looking to nuclear and hydro renewables, not only to provide their electricity needs but to meet climate goals. This is resulting in the shutting down of coal-fossil power plants that no longer have a role to play in a fast-changing world.
Opened in 1962, the Athlone Power Station was the last coal-fired power station operating in Cape Town, South Africa when it stopped generating power in 2003. The iconic cooling towers, which were known by locals as “The two ladies of Athlone” and had long been a feature of the Cape Town landscape, were demolished several years later.
The efficient user-friendly GeoSLAM equipment enabled the team to safely and comprehensively survey this hazardous and complex plant.
Proper planning was essential as demolition can be potentially hazardous for the safety of personnel due to the plant’s age-structure, and onsite teams often having to operate across split levels, in total darkness. The removal of contaminated waste can be equally challenging. Cost is also a major factor and companies responsible for shutting down plant are continuously looking at ways to be cost effective while providing a reliable, fast and efficient service.
Aurecon, a global engineering, design and advisory company, won the tender from the City of Cape Town to project manage the site for the final stage of decommission. This involved surveying the plant whilst stripping, clearing and removing unused material, redundant equipment and certain historical structures. Their task also included securing all remaining structures, leaving the site in a secure state and registering servitudes for remaining bulk services. Aurecon found Athlone to be a challenging project due to accessibility issues and lack of light. Also, because of the Power Station’s historical importance, salvaging certain unique equipment had to be considered. The team needed a simple and effective solution that could accurately map the site quickly while keeping them safe in a tough environment.
Aurecon chose to work with mobile LiDAR scanners so that the historians, structural engineers and environmentalists could have the data they needed, without having to enter the potentially dangerous site. For the Athlone project, GeoSLAM’s ZEB Revo RT scanner and ZEB Pano camera were used, as well as theZEB Horizon and ZEB Cam. The building’s interior and exterior were scanned with the ZEB scanners The two data sets were merged to provide a full 3D point cloud of the entire building.
Using the Pano, the team generated photos that were incorporated inside the point cloud, so that the offsite survey team could have greater visualisation of the site to feedback commentary. The efficiency of the scanners and speed of capture meant that unlike other scanning methods, the team could repeatedly capture the site. This meant that decisions and assessments could be taken frequently, without the need for lots of people to visit the dangerous site.
In total, the whole facility was scanned in three days with data sets processed overnight, a total of eight hours. The combined datasets were available within a week, which enabled Aurecon’s modellers to commence work on the classification of components in the power station.
The final 3D point cloud representation of the interior of the power station enabled the engineering team to assess and quantify the amount of salvage and scrapped material to be removed from the site, and to plan the logistics of the removal in context with the physical shape and size of the existing building.
The accurate 3D model equipped the stakeholders with information that allowed them to safely and precisely analyse for activities such as material quantification, condition assessment and the preparation of decommissioning method statements.
If you’d like to learn more about how GeoSLAM solutions can help you, submit the form below.
3D Scanning Construction and Demolition Waste
Location
Egypt
Scan time
17 minutesper scan
Size
82,823 m2
Scanned
Construction and demolition waste
Industry
Construction
ZEB Revo RT | Housing and Building National Research Centre
The government of Egypt (GoE) are leading several initiatives to reuse and recycle the ever-increasing quantities of construction and demolition Waste (CDW) around the country. These initiatives include a national strategy and action plan to effectively manage around 40 million tons of CDW generated annually. They target to recycle 50% of CDW materials by 2030. One of the major challenges facing Municipalities in Egypt is calculating the amount of CDW accumulated, due to illegal dumping of waste being common place in cities.
Commissioned by the Ministry of Environment and the GIZ institution, HBRC (Housing and Building National Research Centre) have been tasked with finding effective methods for quantifying and characterising the amount of CDW in four Egyptian Governorates (Gharbia, Kafr-El-Sheikh, Assuit and Qena).
This project paves the way to developing an optimal construction and demolition waste management strategy in Egypt. The research team used GeoSLAM’s ZEB Revo RT SLAM laser scanner to map the construction waste piles. The scan data is a sound method for quantifying waste volumes over a period of time, due to the ease of capture and accurate data.
The traditional surveying of CDW accumulations was not practical as CDW locations are difficult to walk through and experience rapid changes to the waste quantities.
The ZEB Revo RT is ideal for rapid data capture in real time, making it the perfect tool for this job. By walking through the construction and demolition waste sites, the team are mapping as they go, shortening the amount of time spent in a hazardous environment, reducing health and safety risks.
The simplicity of the solution means that anybody can capture the data, with minimal training, making the scans repeatable as often as needed. Covering an area of 84,823 m2, the research team conducted 12 scans, dividing the route into zones and each scan lasted an average of 17 minutes.
Once the scanning was complete, they opened the data in GeoSLAM Hub where the point cloud can be viewed and prepared for GeoSLAM Volumes. Using GeoSLAM Volumes, the researchers could accurately calculate the quantity of construction and demolition waste. The findings were reported back in a presentation during the third International conference on Smart Cities.
This way of calculating volumes is fast, efficient, cost effective, safer than other methods and repeatable, making the SLAM scanner the right tool for the job. The research effort opens the door into the utilisation of 3D modelling of construction waste management sites.
The application of laser technology would enable the quick and accurate estimation and modeling of waste quantities.
If you’d like to learn more about how GeoSLAM solutions can help you, submit the form below.
Oxford Archaeology scan three historic sites in under 48 hours
Industry
Conservation
Time
48 hours
Location
Various, Israel
Size
Three sites across Israel
Scanned
Historic Sites
Oxford Archaeology | Words by Jamie Quartermaine
“48 hours to scan three historic sites in Israel – ambitious or impossible? Equipped with a handheld 3D mapping device from GeoSLAM, we were determined to find out. Our first stop was the Schneller building in Jerusalem. In its 160 year history it has been used as an orphanage, barracks and ammunition arsenal. A few years ago, an archaeological team unearthed the remains of a Roman bath house and winery underneath the site. The next stage of the building’s history is a conversion into a museum of Judaism – hence the requirement for a complete, high-accuracy survey of the site.
Made up of four floors, 130 rooms, an outer courtyard and a number of stables, we needed to work quickly to scan the entire site. Using the handheld ‘go-anywhere’ ZEB Revo, in three – 30 minute scans he captured the entire building, including survey control points to georeference the data. Using traditional scanners, this would have taken several weeks and involved multiple set-ups.
“With the ZEB Revo, what use to take weeks can now be done in hours“
Next stop was an elegant and beautiful 12th century Benedictine monastery. With no more than 30 minutes between the end of the Vespers – the evening service – and the time when the public would be allowed into the monastery, we carried out a quick reconnaissance and accurately captured the unique domed building, only possible using GeoSLAM’s ’go-anywhere’ device.
Panorama of Jerusalem Old City with Church of the Holy Sepulchre, Israel
Final port of call was a delapidated 19th-century merchant house in the ancient Arab town of Jaffa. The challenge here was to record the building while construction works were in progress, with hoardings and scaffolding obscuring structures. A near impossible task, but the ZEB Revo was still able to collect survey-grade data in a matter of hours, which formed the basis of a working record of elevations, sections and plans.
In under 48 hours Jamie had captured highly accurate 3D images of 3 heritage buildings. Proof indeed that with the ZEB Revo, what used to take weeks can now be done in hours.
Bloom Cloud Engine is a powerful on-premise point cloud editor ideal for use in Design, Fabrication, and Construction applications. Easy to deploy across your project team, BloomCE allows users to optimize and condition the point cloud data from all reality capture modalities, providing the fundamentals for Asset Management and Digital Twin project requirements.
Blacklight, based in Romania, focuses on information technology that captures, measures and visualises data used in various fields of activity through providing valuable solutions.
Cybernetech Corporation, based in Japan, is a specialised trading company that offer advanced information and communication equipment and geospatial information technology.
Seiler Instrument is an American company that specialises in distributing surveying software and instruments serving industries such as surveying, engineering and construction.
Favre, Développement & Foresterie, based in Switzerland, are experts in geomatics and work with public and private landowners for forest management and environmental heritage.
3DT Digital Manufacturing is an Australian company that use the latest technology to adapt to changes in real time. It aims to help their customers become more efficient and productive.
Sigma Mascot, based in Hong Kong, provides solutions for 3D Laser Scanning, Geospatial systems and BIM services for industries such as Forestry, Construction and Real Estate.
Precision Laser & Instrument is an American company that offers comprehensive positioning solutions for the Construction, Survey, and GIS industries. They ensure high returns on investments and business success.
Export your point cloud into a range of formats, including LAZ, LAS, PLY and TXT. Datasets can also be exported as structured or unstructured E57 files, both of which include embedded panoramic images.
Surface normals at each point can now be computed from PLY and E57 formats, allowing users to export colourised data and create a high-quality polygonal mesh in third party software .
Stop and Go Georeferencing
Known control points are captured during a scan and automatically compared and matched to the associated coordinates during the processing stage in Connect. A rigid and/or a non-rigid adjustment can be made to the dataset and an accuracy report is exported, highlighting how successful the transformation was. Users can now view and manipulate the processing parameters to ensure a more accurate match between points.
Manual Alignment
Align multiple scans using a combination of manual and automatic processes. This workflow can be performed on two or more scans in the same project. Users have a choice to export the aligned scans separately or as a single merged point cloud.
JP Interactive Viewer
Leverage your GeoSLAM data by integrating JP Interactive Viewer into your workflows. JPIV allows you to unlock the full potential of your reality capture data and distribute actionable insights across your teams.
Our support team will be available for GeoSLAM Care customers on:
Monday 26th, 8 am – 4 pm (GMT)
Tuesday 27th, 8 am – 4 pm (GMT)
Wednesday 28th – 31st December – standard support hours
Monday 2nd January, 8 am – 4 pm (GMT)
From Tuesday 3rd January – standard support hours resume
Test pop-up
fsikajntgfitdshagklndsakj;gnjkdasklngklsa
Click here to view the release notes.
Autodesk Recap
Autodesk Recap contains tools for the manipulation and interpretation of high quality point cloud data and to aid designers and engineers in their creation of 3D models for real-world projects and assets (e.g. buildings and other infrastructure). It’s integrated design features help to streamline workflows, for example Scan to BIM. Recap is used to create initial design projects that users can then take into other Autodesk modules (e.g. Revit, Navisworks, AutoCAD).
Autodesk Navisworks
Autodesk Navisworks is a comprehensive project review solution that supports co-ordination, analysis and communication of design intent and constructability. The software can be used as a common data environment (CDM) for multidisciplinary design data created in a broad range of Building Information Modelling (BIM) packages. Using the tools within Navisworks, users can anticipate and minimise and potential problems between the physical building and the structural model.
Autodesk Revit
Autodesk Revit is a building information modelling (BIM) software. It contains tools which allows for planning and tracking throughout the building’s lifecycle. The software also allows multiple disciplines to collaborate more efficiently and make more informed decisions early in the design process. As GeoSLAM’s hardware allows for quick data capture, the equipment can be used to scan any existing buildings with the purpose of using the data to produce a digital twin.
Orbit GT allows users to capture and manage available 3D data (LiDAR data and imagery), extract a range of features for map production and make data sharable. All Orbit modules are ready to be used with 3D data from indoor, oblique, UAS and mobile mapping projects with other extensions that can be added to the Publisher and Orbit Cloud. Orbit can be used with the ZEB Discovery solution.
ContextCapture
ContextCapture is a reality modelling tool, allowing for the import of any point cloud and imagery data for the creation of high resolution reality meshes. These realistic meshes are accurate representation in 3D with high resolution RGB values of any scanned environment. By using GeoSLAM data in ContextCapture the users are able to create indoor reality meshes, which has been never possible before.
Microstation
Microstation is a 2D/3D software for designing building and infrastructure projects. It includes building information modelling (BIM) tools to document and assess any type of asset throughout its lifecycle. GeoSLAM solutions are often used in Microstation in the underground mining sector and to assess the current stage of any built environment, update the design model, and generate BIM information.
Deswik
With the GeoSLAM Connect stop-and-go georeferencing feature, users can easily georeference headings from known positions and map for analysis of overbreak, underbreak, undercutting and blast roughness calculations. This information is used within Deswik Mapping to analyse headings and levels.
Esri
Outputs from GeoSLAM’s solutions can be input to Esri’s GIS programs and apps, including ArcPro, ArcDesktop, ArcGIS Online and ArcScene. Join point clouds with local geodata or classify and edit scans based on their geography and statistics.
Micromine is a detailed and diverse mining software that provides solutions including modelling, estimation, design, optimisation and scheduling. Once data is exported from Connect it can be imported into Micromine and easily converted into wireframes. These can be used in Micromine for further studies into volumetric slicing, over and underbreak analysis, geologic modelling, face mapping and many more.
Terrasolid provides tools for data processing of airborne and mobile mapping LiDAR data and imagery. It includes different modules for tasks like data manipulation, calibration, georeferencing, point cloud classification, modelling and many more. It is a very powerful tool for a variety of industries, surveyors, civil engineers, planners, designers. Full, UAV or lite versions of Terrasolid modules are available for both MicroStation or Spatix software. All GeoSLAM products are compatible with Terrasolid and GeoSLAM data can be enhanced and edited with this software.
Floorplanner
Floorplanner allows you to draw accurate 2D floorplans within minutes and decorate with over 150,000 items from kitchen appliances to tables and chairs. Data is exported from GeoSLAM Connect in PNG file format with a scale of 1cm per 1 pixel and can be taken into Floorplanner.
Unity
GeoSLAM 3D point cloud data can be imported into Unity 3D Game Engine to generate interactive 3D scenes, where users can create 3D BIM models with textures and explore the space in 3D photorealistic environments.
Unreal Engine
Although Unreal Engine is mainly built for developing games, increasingly users are starting to use it to develop VR applications for understanding the current conditions of buildings, infrastructure and similar. Unreal Engine with a point cloud plugin can be used to visualise GeoSLAM point clouds in VR, which allows for collaboration, simulation and the understanding of current conditions of any scanned environment. Additionally, Unreal Engine tools are completely free.
Veesus Arena4D
Arena4D is a software package for marking up, annotating and editing 3D point cloud data containing a various export capabilities. It has a powerful and simple to use animation package which allows users to visualise massive point clouds in a simple way. GeoSLAM data can be simply uploaded and used in this package for the assessment of the current conditions of any structure, comparing differences between captured data (as built) to designed model (as designed).
Pointfuse
Pointfuse generates 3D meshes from point cloud data and classifies them to building ceilings, walls, windows and other features in IFC format. By using GeoSLAM data with Pointfuse users can very quickly create a classified BIM model with minimal manual input or expertise needed.
MineRP
MineRP has a Spatial DB that uses GeoSLAM data to represent visually the real environment of the underground mine. The software uses other data layers to overlay information on the digital landscape for decision making and tracking.
Pointerra
Pointerra provides a powerful cloud based solution for managing, visualising, working in, analysing, using and sharing massive 3D point clouds and datasets. Pointerra allows users to simply visualise and interrogate GeoSLAM data from anywhere.
Nubigon
Nubigon is a software solution that allows users to seamlessly interact with large point clouds and create visualisations and animations. Take your GeoSLAM point cloud data into Nubigon to create eye-catching flythrough videos.
Here is an example of a visualisation created in Nubigon using GeoSLAM point cloud data:
SLAM Environmental Pre-sets
Common data capture scenarios, such as UAV, outdoor, indoor, linear, and vehicle, have been characterised in Connect and data processing pre-sets for each environment have been defined. These can be selected at the beginning of the data processing stage allowing this process to be highly simplified.
Closed and Open Loop Georeferencing
Both methods match the scan data from a ZEB Locate system with the GPS data collected from the antenna to georeference the point cloud. When a scan starts and ends in the same place, this is classed as “closed loop”. “Open loop” is when the start and end position of a scan are in different locations. Standard SLAM practices apply to both methods of data collection.
Open Loop SLAM for the ZEB Locate is available on request – let’s talk about it.
Stop and Go Alignment
Common static points are captured during several scans meaning that these datasets can be automatically aligned. A single point cloud is then exported as if the data was captured in a single scan.
Floor Slices
Horizontal and vertical slices can be taken from any location within the point cloud. Horizontal floor slices can also be automatically taken at a given height above the floor as defined in the processing stage.
Change Detection
Mostly used in the construction industry, multiple point clouds can be compared and any areas that have changed are automatically highlighted. Point clouds can also be compared with CAD models – for instance to track progress on a construction site – and PDF reports can be generated to present this information.
Queued Processing
Import multiple .geoslam files into Connect for processing and the scans will be processed in the order they were imported. The size of the queue can be defined by the user.
Enquire about the ZEB Horizon RT
Error: Contact form not found.
If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if pointcloud is coloured)
UK payment plan
UK payment plan info
USA Payment Plan
Coupling with hardware
Some SLAM software algorithms have been made available as open-source on the internet, but they are purely algorithms and not a product that you can take and use off-the-shelf. SLAM is most successful when it is tightly coupled and designed with specific hardware in mind. A generic SLAM cannot perform as well as one that has been specifically designed for a purpose.
Usage in multi-environments
Visual SLAM is closer to the way humans navigate the world, which is why it’s popular with robotic navigation. But in the same vein, vSLAM will have the same image-capture challenges as humans do, for example not being able to look into direct sunlight, or not having enough contrast between the objects picked up in the image. These can be overcome indoors, however, you may need to map a forest, tunnel or urban canyon. While SLAM technologies don’t rely on remote data (meaning you can scan areas where there is no GPS), you do need to ensure the SLAM technology you chose operate well inside, outside, in daylight and darkness.
Real-time data capture
Mapping a property is time-critical. Ideally, you want to make a single visit and gather sufficient data to create a highly accurate 3D model. Ensure the software you choose transforms 3D point cloud data into actionable information in real-time. This allows you to view and interrogate your data whilst still in the field, and make any adjustments, or collect missed data, then and there.
Flexibility and deployment
If you’re trying to map an enclosed environment (e.g. tunnel, mine) or a complex, difficult-to-access space such as a heritage building with tight stairwells and uneven floors, you need to use fully-mobile, adaptable technology. Wheel-based systems, often used with the vSLAM camera, will struggle with access. Handheld devices or LiDAR scanners that can be attached to a drone or pole and still deliver accurate results in a rugged environment are best for navigating hazardous spaces.
Speed and accuracy
While vSLAM is able to provide a qualitative high-level map and sense of the surrounding features, if you’re needing survey-quality accuracy and rich-feature tracking at a local level, you’ll need to consider LiDAR. Cameras require a high-frame-rate and high processing to reconcile data sources and a potential error in visual SLAM is reprojection error, which is the difference between the perceived location of each setpoint
and the actual setpoint.
Quality and distortion
In order to deliver the depth required for high-quality data, a number of depth-sensing cameras are needed with a strong field of view. In most cases, this isn’t possible, especially as cameras with high processing capabilities typically require larger batteries which weigh down airborne scanners, or limit the time of flight. LiDAR is both faster and more accurate than vSLAM, and can deliver detailed point clouds without expensive (and timely) camera processing.