GeoSLAM Sample Data

View and download data in our free point cloud viewer

Here’s some helpful tips for the best viewing experience

  • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
  • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
  • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
  • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

Pitcher & Piano Bar

Location: Nottingham, United Kingdom
ZEB Scanner: ZEB Horizon & ZEB Revo RT
Scan time:
22 Minutes

The external was captured with the ZEB Horizon and the internal was captured with the ZEB Revo RT. Read more about the scan here.

Would you like to see a specific dataset that’s not on this page? Contact [email protected]

GeoSLAM Sample Data

View and download data in our free point cloud viewer

Here’s some helpful tips for the best viewing experience

  • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
  • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
  • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
  • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

Vent Shaft

Location: United Kingdom
ZEB Scanner: ZEB Revo RT

This data was captured using GeoSLAM’s ZEB Cradle accessory.

Would you like to see a specific dataset that’s not on this page? Contact [email protected]

GeoSLAM Sample Data

View and download data in our free point cloud viewer

Here’s some helpful tips for the best viewing experience

  • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
  • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
  • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
  • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

St. Botolphs Priory

Location: Essex, UK
ZEB Scanner: ZEB Revo RT
Scan time:
20 Minutes

This data was captured as part of GeoSLAM’s Big SLAM Tour in 2021. Click here to learn more about the scan

Would you like to see a specific dataset that’s not on this page? Contact [email protected]

GeoSLAM Sample Data

View and download data in our free point cloud viewer

Here’s some helpful tips for the best viewing experience

  • If your internet connection allows, move the Point Budget slider to the maximum amount available to view all the points in the cloud.
  • Making the point size smaller using the Point Size slider makes the data easier to view and interpret.
  • In the tools section of the viewer, you can measure the distance and angles of features within the pointcloud.
  • Using the materials section of the viewer, you can use the Select Attributes dropdown to view by intensity, elevation and RGB (if point cloud is coloured).

Distillery

Location: Europe
ZEB Scanner: ZEB Revo RT
Scan time:
20 Minutes

GeoSLAM’s ZEB Pano was used to capture images of the distillery.

Would you like to see a specific dataset that’s not on this page? Contact [email protected]

On-demand Webinar

Watch a previous webinar in your own time

Introduction to Handheld Laser Scanning

Hosted: December 2021

Handheld laser scanning has become a crucial tool for many businesses who need to collect geospatial data. Compared to the more traditional methods, handheld laser scanning is considerably more efficient and makes it much easier to navigate through difficult spaces such as underground or narrow passages. GeoSLAM handheld LiDAR mapping solutions use next generation SLAM technology to simultaneously localize and map a space up to 10 times faster than traditional methods.

If you’re new to handheld laser scanning or think your company could benefit from this technology, then this webinar is for you.

Key takeaways:

  • What is a handheld laser scanning and how does it compare to a static scanner
  • Which industries are using this technology and how are they using it?
  • GeoSLAM scanning solutions – Meet the ZEB Family
  • The software behind it

Scanning behind a dropped ceiling using mobile LiDAR

Surveying buildings is difficult and accessing hard to reach areas, like dropped ceiling or raised floors, without disrupting business can be seemingly impossible. In this blog we’ll discuss how SLAM and LiDAR technology has made scanning behind dropped ceilings a simple process.

Surveying Boston City Hall

Location

Boston, USA

Scan time

Approx. 20 minutes per scan

Size

Over 1 million sq/ft

Scanned

Boston City Hall

Industry

Surveying

Boston City Hall was built in 1968, to help boost the city’s economy after years of stagnation. The building and surrounding plaza sought to modernize the city’s urban centre, reinvigorating the run-down neighbourhood of Scollay Square.

Despite the public investment project being welcomed by the people of Boston, the buildings ‘brutalist’ style of architecture created debate amongst the locals, with some suggesting you either love or hate the concrete design. In spite of the concerns from the public, the city
hall has been home to the mayor of Boston and the city council for over 5 decades, and the ‘brutal’ style of architecture has become part of Boston’s rich history.

To encourage more people to use Boston City Hall and to increase accessibility, it was decided in 2017 that the City Hall would be renovated to serve a more modernized purpose. The infrastructure upgrades include better access to utilities, plants and fountains in the plaza area, with the intention of encouraging more people to visit.

The Horizon was a gamechanger…it’s just amazing in terms of the scanning distance, power of the sensor and the ability to easily capture the entire plaza.

Peter Garran and his team, from Aerial Genomics, were appointed by The City of Boston and Sasaki with the task of scanning both the interior and exterior of the City Hall, in anticipation of the renovation project. Spanning 9 floors and housing multiple individual rooms, as well as a busy plaza area, the task of mapping the building threatened to take several months to complete. Also, the City Hall is an active office that contains confidential rooms and Aerial Genomics did not want to disrupt everyday operations too much. Considering their options, the team decided the fastest and most cost-effective way of mapping the building and its surrounding area would be to use mobile LiDAR scanners.

They chose a ZEB Horizon to scan the exterior and inside the Main Hall. The ZEB Revo RT was used to map the buildings vast interior. These scanners were chosen due to their speed, accuracy and mobility. By simply walking around the building, Peter and his team captured the large layout, saving them time.

As they were scanning during the pandemic, it was key for Peter and his team to spend as little time as possible in the building and compared to other scanning methods, GeoSLAM’s scanners were able to deliver on that goal. With the ZEB Horizon, Aerial Genomics captured both the exterior and interior of the Main Hall in just 4 scans, and in less than 2 hours. This scanner was specifically chosen to scan the Main Hall due to its 100m range being able to capture the high walls. To help combat getting in the way of the City Halls’ day-to-day business, the team were given limited amounts of time in the evening to scan a multitude of rooms inside the Hall. Using the ZEB Revo RT, the team could scan the almost 1 million square feet interior, in just 4 nights, consisting of 5 hours each night.

The scans were processed using GeoSLAM Hub and merged to create one point cloud, by Aerial Genomics. The manoeuvrability, ease of use and accuracy that the ZEB scanners provided meant the data collected was ready within a week, to be created as a BIM model to send to the architects. The simple, easy to use solution meant the architects could start thinking about the redevelopment and renovation, without the need to visit the hall during a pandemic. The final BIM model, created in Autodesk Revit, is still referred to today.

Video courtesy of Aerial Genomics
Surveying Boston City Hall

If you’d like to learn more about how GeoSLAM solutions can help you, submit the form below.





    Please select your Country


    How did you hear about GeoSLAM?

    GeoSLAM and its authorised partner network will use the information you provide to contact you about products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, please review our Privacy Policy.

    Opt in to the GeoSLAM mailing list for updates and offers

    Mapping a decommissioned power station

    Location

    Cape Town, South Africa

    Scan time

    8 Hours Total

    Size

    Approx. 117,000 m2

    Scanned

    Power Station

    Industry

    Surveying

    ZEB Family | Safely surveying a hazardous power station

    All over the globe, countries are looking to nuclear and hydro renewables, not only to provide their electricity needs but to meet climate goals. This is resulting in the shutting down of coal-fossil power plants that no longer have a role to play in a fast-changing world.

    Opened in 1962, the Athlone Power Station was the last coal-fired power station operating in Cape Town, South Africa when it stopped generating power in 2003. The iconic cooling towers, which were known by locals as “The two ladies of Athlone” and had long been a feature of the Cape Town landscape, were demolished several years later.

    The efficient user-friendly GeoSLAM equipment enabled the team to safely and comprehensively survey this hazardous and complex plant.

    Proper planning was essential as demolition can be potentially hazardous for the safety of personnel due to the plant’s age-structure, and onsite teams often having to operate across split levels, in total darkness. The removal of contaminated waste can be equally challenging. Cost is also a major factor and companies responsible for shutting down plant are continuously looking at ways to be cost effective while providing a reliable, fast and efficient service.

    Aurecon, a global engineering, design and advisory company, won the tender from the City of Cape Town to project manage the site for the final stage of decommission. This involved surveying the plant whilst stripping, clearing and removing unused material, redundant equipment and certain historical structures. Their task also included securing all remaining structures, leaving the site in a secure state and registering servitudes for remaining bulk services. Aurecon found Athlone to be a challenging project due to accessibility issues and lack of light. Also, because of the Power Station’s historical importance, salvaging certain unique equipment had to be considered. The team needed a simple and effective solution that could accurately map the site quickly while keeping them safe in a tough environment.

    Aurecon chose to work with mobile LiDAR scanners so that the historians, structural engineers and environmentalists could have the data they needed, without having to enter the potentially dangerous site. For the Athlone project, GeoSLAM’s ZEB Revo RT scanner and ZEB Pano camera were used, as well as the ZEB Horizon and ZEB Cam. The building’s interior and exterior were scanned with the ZEB scanners The two data sets were merged to provide a full 3D point cloud of the entire building.

    Using the Pano, the team generated photos that were incorporated inside the point cloud, so that the offsite survey team could have greater visualisation of the site to feedback commentary. The efficiency of the scanners and speed of capture meant that unlike other scanning methods, the team could repeatedly capture the site. This meant that decisions and assessments could be taken frequently, without the need for lots of people to visit the dangerous site.

    In total, the whole facility was scanned in three days with data sets processed overnight, a total of eight hours. The combined datasets were available within a week, which enabled Aurecon’s modellers to commence work on the classification of components in the power station.

    The final 3D point cloud representation of the interior of the power station enabled the engineering team to assess and quantify the amount of salvage and scrapped material to be removed from the site, and to plan the logistics of the removal in context with the physical shape and size of the existing building.

    The accurate 3D model equipped the stakeholders with information that allowed them to safely and precisely analyse for activities such as material quantification, condition assessment and the preparation of decommissioning method statements.





    If you’d like to learn more about how GeoSLAM solutions can help you, submit the form below.




      Please select your Country

      How did you hear about GeoSLAM?

      Opt in to the GeoSLAM mailing list for updates and offers

      Your information will be used by GeoSLAM and our authorised partner network.

      3D Scanning Construction and Demolition Waste

      Location

      Egypt

      Scan time

      17 minutes per scan

      Size

      82,823 m2

      Scanned

      Construction and demolition waste

      Industry

      Construction

      The government of Egypt (GoE) are leading several initiatives to reuse and recycle the ever-increasing quantities of construction and demolition Waste (CDW) around the country. These initiatives include a national strategy and action plan to effectively manage around 40 million tons of CDW generated annually. They target to recycle 50% of CDW materials by 2030. One of the major challenges facing Municipalities in Egypt is calculating the amount of CDW accumulated, due to illegal dumping of waste being common place in cities.

      Commissioned by the Ministry of Environment and the GIZ institution, HBRC (Housing and Building National Research Centre) have been tasked with finding effective methods for quantifying and characterising the amount of CDW in four Egyptian Governorates (Gharbia, Kafr-El-Sheikh, Assuit and Qena).

      This project paves the way to developing an optimal construction and demolition waste management strategy in Egypt. The research team used GeoSLAM’s ZEB Revo RT SLAM laser scanner to map the construction waste piles. The scan data is a sound method for quantifying waste volumes over a period of time, due to the ease of capture and accurate data.

      The traditional surveying of CDW accumulations was not practical as CDW locations are difficult to walk through and experience rapid changes to the waste quantities.

      The ZEB Revo RT is ideal for rapid data capture in real time, making it the perfect tool for this job. By walking through the construction and demolition waste sites, the team are mapping as they go, shortening the amount of time spent in a hazardous environment, reducing health and safety risks.

      The simplicity of the solution means that anybody can capture the data, with minimal training, making the scans repeatable as often as needed. Covering an area of 84,823 m2, the research team conducted 12 scans, dividing the route into zones and each scan lasted an average of 17 minutes.

      Once the scanning was complete, they opened the data in GeoSLAM Hub where the point cloud can be viewed and prepared for GeoSLAM Volumes. Using GeoSLAM Volumes, the researchers could accurately calculate the quantity of construction and demolition waste. The findings were reported back in a presentation during the third International conference on Smart Cities.

      This way of calculating volumes is fast, efficient, cost effective, safer than other methods and repeatable, making the SLAM scanner the right tool for the job. The research effort opens the door into the utilisation of 3D modelling of construction waste management sites.

      The application of laser technology would enable the quick and accurate estimation and modeling of waste quantities.

      https://youtu.be/3iEXCsonWBg

      If you’d like to learn more about how GeoSLAM solutions can help you, submit the form below.




        Please select your Country

        How did you hear about GeoSLAM?

        Opt in to the GeoSLAM mailing list for updates and offers

        Your information will be used by GeoSLAM and our authorised partner network.

        Where in the World is LiDAR Being Used? Top 6 Uses from 2021

        With increasing awareness of LiDAR technology, its applications are becoming more diverse. From helping to prevent natural disasters to mapping historic caves and restoring architectural wonders, our ZEB laser scanners have been involved in a range of interesting projects over the past 12 months.

        Referencing using control points

        Control points are points within a given area that have known coordinates. They are a key tool in the geospatial industry and can be utilised in a variety of ways, including georeferencing point clouds and aligning aerial images to terrestrial data. By using control points, surveyors are able to accurately map larger areas and position overlapping surveys of an area together. They can also be used in non-geospatial industries, such as construction and mining, to show clear temporal comparisons between multiple surveys of the same area. This method of georeferencing is also referred to as adjust to control.

        Previously, checkerboards and spherical targets have been used as control markers – these items are captured in surveys and can be identified for georeferencing or aligning. The main drawback with these methods is that they rely heavily on human interpretation when processing, meaning that the processed datasets may be susceptible to an increased amount of error.

        When capturing handheld surveys, GeoSLAM systems are able to collect reference points. These can then be matched with known control points to reference scans and increase the level of accuracy.

        What makes GeoSLAM referencing different?

        • More accurate: GeoSLAM scanners are used with known control points and survey grade pins, rather than more traditional moveable targets. This reduces the margin of error within point clouds.
        • Save time: using known survey control points means there is no need to manually position individual targets before every scan. Data capture can then be repeated regularly, faster, easier and with no concerns that reference points are captured in different places each time.
        • Safer: in dangerous or inaccessible areas, targets are not required to be physically positioned on pre-defined control points prior to each scan. This reduces the time exposed to hazards and unsafe areas.
        Geospatial

        Geospatial

        Easily reference point clouds and produce reports highlighting accuracy values.

        Utilities

        Mining

        Regularly monitor site operations (e.g. stockpiles) and hazards.

        Security & Defence

        Construction

        Compare changes over time and map progress onto predetermined CAD/BIM models.

        Capture

        All GeoSLAM ZEB systems are able to capture reference points using the reference plate accessory. These reference points can simply be measured by remaining stationary for periods during a scan and will be recognised during the processing stage. Points can be captured from a horizontal or vertical position, depending on which ZEB system is used, making it easier than ever to georeference datasets.

        Process

        Using the Stop & Go Georeferencing workflow in GeoSLAM Connect, datasets can be automatically referenced through a rigid or non-rigid transformation.

        Scans are rotated and adjusted and reference points are matched to the known control points without changing the scale factor. A single transform is applied to every data point in the point cloud.

        The scale factor of datasets is altered to suit the control points – every data point is moved to a new position; this means the relative positions of these points also changes. This method is better suited for poor SLAM environments.

        A clean georeferenced point cloud is produced using both methods. An accuracy report of the transformation is also generated and includes an RMS error value.

        Once georeferenced using control points, point clouds can be optimised further using leading third party software:

        • Comparisons with existing CAD/BIM models
        • Point cloud to point cloud registration showing changes over time within a given area
        • CAD/BIM model creation

        For more information about our third party partnerships, head to our integrations page.

        Mapping hazardous mines under intense time constraints

        Beck Engineering, an Australian mining engineering consultancy specialising in mining and rock mechanics analysis, needs to rapidly map mines under intense time constraints using versatile technology which is adaptable to any environment. GeoSLAM’s handheld mobile mapping solution was chosen as it is compact, portable and delivers a high level of accuracy. With GeoSLAM’s “go-anywhere” 3D technology in hand, Beck Engineering has been able to supply invaluable data regarding the direct effects of mining to better understand the implications of a deforming rock mass. Beck Engineering is now able to accurately measure the shape of an excavation or tunnel over time. As a result, tunnels are safer, better designed and more cost efficient.

        We have continued to use GeoSLAM products as they have proven to be affordable, lightweight and sufficiently robust devices for their application underground. GeoSLAM continues to produce a high-quality device that is at the forefront of practical mobile laser scanning devices.
        – Evan Jones, Senior Rock Mechanics Engineer at Beck

        Contact us





          Please select your Country


          How did you hear about GeoSLAM?

          GeoSLAM and its authorised partner network will use the information you provide to contact you about products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, please review our Privacy Policy.

          Opt in to the GeoSLAM mailing list for updates and offers

          Blogs

          Keep up to date with the latest news and thought leadership from GeoSLAM.